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Abstract

In this paper we investigate the Pareto efficiency of equilibrium in overlapping

generations (OLG) models that incorporate three factors of production: phys-

ical capital, labor, and natural resources. We derive both general sufficient

conditions and general necessary conditions for assessing the Pareto efficiency

of equilibrium allocations, extending and generalizing previous results in this

field. We base our approach on comparing the growth rates of capital, income,

or total asset value to the interest rate. Specifically, if any of these growth

rates is lower than the interest rate, the equilibrium is efficient; if any exceeds

the interest rate, the equilibrium is inefficient. We apply these general crite-

ria to several models of resource use, some of which are novel. In one such

model, where the resource regeneration function is linear, we establish a thresh-

old for the speed of resource extraction: below this threshold, the equilibrium

is efficient; above it, inefficiency emerges. In another novel model, featuring a

quadratic regeneration function, we introduce a combined capital index. If the

*The author would like to thank Zhixiang Zhang, Justin Yifu Lin, Min Wang, Xi Weng,

Xiaojun Zhao, Pengfei Zhang, Pan Liu, and Xinxi Song for their valuable comments, and the

Fundamental Research Funds for the Central Universities, Peking University, LMEQF, and

the National Natural Science Foundation of China (Grant No.72141301) for their financial

support.
1Email: bozhang@pku.edu.cn

1



labor share is below this index, the equilibrium is efficient; if the labor share

exceeds the index, the equilibrium is inefficient.

JEL classification: O13; O40; Q20; Q30

Keywords: OLG, dynamic equilibrium, efficiency, natural resources.

1 Introduction

In resource economics, the overlapping generations (OLG) model is a funda-

mental tool for analyzing interactions between different generations in resource

utilization. It is well known that in OLG economies, even without natural

resources, equilibrium can be Pareto-inefficient. This means that the market

mechanism does not always result in an efficient allocation of resources. When

natural resources are introduced, the problem becomes even more complex.

A fundamental question arises: Given an equilibrium in an OLG economy,

is it Pareto-efficient? How can we assess the Pareto efficiency of such an equi-

librium? Are there appropriate tools or criteria for doing so? This issue is

not only of academic importance but also crucial for policymakers to determine

whether market intervention is necessary and, if so, what form that interven-

tion should take. Only when the efficiency issue is identified can we evaluate

the role of markets in resource allocation and consider the need for government

intervention.

Many researchers have explored this topic. Notably, Malinvaud (1953), Cass

(1972), and Mitra (1978) introduced well-known criteria for dynamic efficiency.2

Balasko and Shell (1981) analyzed Pareto efficiency in pure exchange OLG

economies through price mechanisms, Homburg (1992) proposed an income-

based criterion, and Abel et al. (1989), referred to as AMSZ (1989) in the

sequel, developed a net dividend criterion for Pareto efficiency. However, most

of these studies exclude natural resources, with the exception of Mitra (1978),

who only considered exhaustible resources. For a broader class of natural re-

sources, no widely applicable criteria exist for determining the Pareto efficiency

2Related to but distinct from Pareto efficiency.
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of equilibrium in OLG economies. We aim to fill this gap by establishing such

criteria for more general natural resource scenarios.

In resource economics, most previous researchers on Pareto efficiency in OLG

economies have focused on models with natural resources but without physi-

cal capital, primarily analyzing steady-state equilibrium, which is far simpler

than dynamic equilibrium. However, when both natural resources and physical

capital are considered simultaneously, the problem becomes significantly more

complex. In reality, physical capital and natural resources typically coexist in

production processes, and their interrelationship has a substantial impact on

output. Therefore, it is essential to include both physical capital and natural

resources in the analysis. Furthermore, focusing solely on steady-state equi-

librium limits the analysis to long-run outcomes, whereas dynamic equilibrium

captures the entire process of economic development. Dynamic equilibrium anal-

ysis is especially important when a steady state does not exist, but a dynamic

equilibrium does.

In this paper, we consider OLG economies with natural resources and physi-

cal capital, aiming to establish criteria for assessing the efficiency of equilibrium.

Our core approach is to compare the growth rates of capital, income, and total

asset value with the interest rate to determine whether the economy is efficient.

Intuitively, if the capital growth rate exceeds the interest rate, it may lead to

overaccumulation of capital, resulting in inefficiency. Similarly, if the growth

rates of income or total asset value surpass the interest rate, this suggests that

income or wealth has not been fully utilized, leading to waste and inefficiency.

Conversely, if these growth rates are lower than the interest rate, overaccu-

mulation or waste will not occur, indicating efficiency. Of course, for greater

accuracy, certain detailed preconditions must be considered.

The structure of this paper is as follows: First, we conduct a systematic

review of the relevant literature. Second, we construct the model framework and

present several general criteria. Third, we apply these criteria to three specific

examples. Each of these examples represents an interesting model, illustrating

some important features of resource utilization. Agnani et al. (2005) introduced
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a simplified version of the first model, focusing solely on exhaustible resources,

whereas the second and third models are original to this paper.

More concretely, in each example, the utility function is log-linear, whereas

the resource regeneration function and production function vary. In the first ex-

ample, the resource regeneration function is linear, and the production function

follows a Cobb–Douglas form. In the second example, the resource regenera-

tion function remains linear, but the production function is constant elasticity

of substitution (CES)-type beyond Cobb–Douglas. In the third example, the

resource regeneration function is logistic, whereas the production function is

of Cobb-Douglas. Along the way, we also discuss issues of sustainability and

equilibrium stability.

Additionally, through these examples, we address the question: Does the

inclusion of natural resources improve economic efficiency compared to an econ-

omy without natural resources? We find that the relationship between natural

resources and capital plays a crucial role. Generally, when natural resources

and capital are complementary, the inclusion of natural resources enhances eco-

nomic efficiency, potentially transforming previously inefficient economies into

efficient ones. However, when natural resources and capital are substitutable,

their interaction in production is less tightly coordinated, and the inclusion of

natural resources may fail to improve economic inefficiency. In such cases, slower

extraction of natural resources tends to promote economic efficiency.

It is important to note that this paper primarily focuses on determining

whether a given equilibrium is Pareto-efficient, rather than exploring the exis-

tence of equilibrium under general conditions. While the existence of equilibrium

is certainly a significant issue, typically, existence and efficiency can be analyzed

separately. For the three examples discussed, of course, we first need to identify

the equilibrium and then evaluate its efficiency.

Developing general criteria for assessing the efficiency of equilibrium in OLG

economies is already a challenging task. Due to space limitations, we do not

address government intervention in cases of inefficiency. Additionally, we only

consider deterministic scenarios and do not tackle the complexities arising from
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uncertainty.

2 Literature Review

In this section, we provide a brief literature review on the topic.

2.1 Dynamic Efficiency in Ramsey Economy

To date, the most significant works, considered as classical, are as follows.

Malinvaud (1953) provides a criterion later known as the Malinvaud condi-

tion for a program to be dynamically efficient: the present value of capital tends

to zero. It is a kind of transversality condition.

Cass (1972) proposes a result later known as the Cass criterion for a program

to be dynamically efficient: the sum of the reciprocals of the discount factors is

divergent.

Benveniste and Gale (1975), under some conditions on the production func-

tion, extend the Cass criterion: a program is dynamically efficient, if the sum

of the reciprocals of the norms of present value of capital is divergent.

Mitra (1978), considering exhaustible resources, under the assumption that

the resource is important in production, proposes a necessary and sufficient

condition for a program to be dynamically efficient: it is competitive and satisfies

a Malinvaud-type condition: the present value of total assets tends to zero.

2.2 Pareto Efficiency in OLG Economy without Natural

Resources

The following works are the most influential and serve as benchmarks in this

field.

Balasko and Shell (1980, 1981a, 1981b), inspired by Cass’s work, prove that

in a pure exchange OLG economy, under certain assumptions, an equilibrium

is Pareto-inefficient if and only if the sum of the reciprocals of the price norms

converges.
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Wilson (1981), for a pure exchange economy of infinite time horizon which

combines infinite-lived agents with finite-lived agents, under certain additional

assumptions, proposes a sufficient condition for the Pareto efficiency of equilib-

rium: the sum of values of all initial endowments converges.

AMSZ (1989) introduces a net dividend criterion in a stochastic environment.

Geanakoplos et al. (1991), focusing on the pure exchange OLG economy, set

a sufficient condition for Pareto efficiency of equilibrium: the first generation

must possess a resource that consistently contributes to income across periods.

Homburg (1992) proposes a sufficient condition for Pareto efficiency of equi-

librium: the present value of wages vanishes. This condition is further clarified

in Croix et al. (2004).

Tirole (1985), in an OLG setting with both productive and nonproductive

assets, demonstrates the existence of multiple equilibria with varying levels of

efficiency and bubbles. In assessing the efficiency of an equilibrium, he compares

the population growth rate with the interest rate.

2.3 Pareto Efficiency in OLG Economy with Natural Re-

sources

In resource economics, regarding Pareto efficiency in OLG economies, the

most significant works are as follows.

Kemp and Long (1979) provide an OLG model with an exhaustible resource

but without capital, in which the production function is not homogeneous of

degree one, and the resource is not essential for production. The unique equi-

librium is inefficient, in which nothing is extracted.

Rhee (1991) examines an OLG economy with land and provides a sufficient

condition for the Pareto efficiency of equilibrium: land is important in pro-

duction, meaning that the income share of land does not diminish. He also

demonstrates that this condition is not necessary by offering a counterexample.

Olson et al. (1997) explore an OLG economy with an exhaustible resource

but without physical capital. They prove that the resource is ultimately de-

6



pleted, and that the equilibrium is Pareto-efficient without assuming that the

resource is important in production.

Krautkraemer (1999), like Olson et al. (1997), examines an OLG economy

with a natural resource but without physical capital where the utility function

is additive log. He particularly emphasizes on the case where the regeneration

function of the resource is logistic. He highlights that when the resource’s output

share is relatively small, overaccumulation of the resource may occur, leading

to a Pareto-inefficient steady-state equilibrium.

Koskela et al. (2002) incorporate a renewable resource into an OLG model

without capital and with quasi-linear preferences. Under certain conditions,

they demonstrate the existence of two steady-state equilibria: one stable and

the other unstable. The unstable one is always Pareto efficient, while the stable

one may or may not be Pareto-efficient.

Agnani et al. (2005) consider an OLG economy with an exhaustible resource

and physical capital, where production function is of Cobb–Douglas, and the

utility function is log-linear. Under the assumption that the economy follows

a balanced growth path, they show that the equilibrium is socially optimal

and thus Pareto-efficient, and the economy will contract if the labor share is

relatively small.

Farmer et al. (2017) examine an OLG economy with a renewable resource

but without capital, where the utility function is log-linear, the production

function is Cobb–Douglas, and the resource regeneration function is logistic.

They incorporate varying harvest costs and show that, with inversely stock-

dependent costs and certain assumptions on model parameters, a unique steady-

state equilibrium exists, which is asymptotically stable. Somewhat surprisingly,

the steady-state equilibrium can be Pareto-efficient even when the own rate of

return on the resource stock is negative.

We observe that there is no general criterion for assessing the Pareto effi-

ciency of equilibria.

Finally, we would like to point out that many researchers, including Hellwig

(2024), have discussed the issue of efficiency in stochastic OLG models. How-
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ever, their primary focus is on addressing uncertainty, and their results do not

cover all of the findings mentioned in the literature review above for the de-

terministic scenario. Our aim in this paper is to establish broadly applicable

criteria for the deterministic case that can encompass the results of previous

works.

3 Model Setup

We begin with some preliminary notations. Let R+ be the set of positive

numbers, N (N+) the set of nonnegative (positive) integers, and N− = {−1}∪N.

For any two positive dynamic variables xt and yt, we use xt ∼ yt to indicate

that yt/xt converges to some positive number, as t→ ∞.

3.1 The Economy

Consider a two-period OLG economy with natural resources, existing at all

points in time within N.

Population: At any time t ∈ N, a new generation (generation-t) of population

Nt is born, living for two periods. Each individual of generation-t has utility

function U(at, bt+1), where at and bt+1 represent their consumption at t and t+1

respectively, and U is smooth, concave, and strictly increasing with respect to

every element.

Furthermore, at t = 0, there is an original generation of size N−1. Each

member of this generation lives for just one period with utility function u(b0),

where u is strictly increasing, smooth, and concave, and b0 is their consumption

at t = 0.

Endowments: Every young individual is endowed with one unit of labor.

Members of the original generation evenly share the physical capital K0 > 0

and natural resource S0 > 0 (be it renewable or nonrenewable).

Firms: At each time t ∈ N, there is only one sector comprising numerous

homogeneous firms sharing an identical technology represented by production
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function

Y = F t(K,L,R),

where Y is the output of the final good, andK,L and R are the inputs of factors:

the physical capital, labor, natural resources, respectively, F t is the production

function at time t, which is first-order homogeneous, smooth, concave, and

strictly increasing with respect to each element. The production functions may

change due to technological progress. The final good can either be consumed or

invested in physical capital. For simplicity, the depreciation rate for the physical

capital is assumed to be 1.

Natural resources: Each natural resource, viewed as a unified entity, is ex-

tracted and sold. They are not physically divided among owners. Instead, own-

ers have shared property rights and therefore equally split the revenue derived

from these resources3. Harvesting these resources is cost-free.

Regarding resource transaction and dynamics, we make assumptions as fol-

lows4:

At the start of each period t, the natural resource (with a stock of St) is

held by older adults with even property rights. A portion of the resource, Rt,

is extracted and sold to the firms, and the remaining resources St −Rt are sold

to young people with even property rights. By the start of the next period,

t+1, the resource stock grows to G(St−Rt). The function G describes resource

regeneration, being smooth, concave, and nonnegative, defined over [0,∞), with

properties G(0) = 0, G′(0) ∈ (0,∞], G′(x) > 0, ∀x > 0.

In particular, G(x) = x refers to the case of exhaustible (nonrenewable)

resources.

The dynamics of the resource are described by

St+1 = G(St −Rt).

Assume that all markets are completely competitive, and every young indi-

vidual has perfect foresight regarding the price system in the next period.

3Tirole(1985) and Rhee(1991), among others, use such a treatment.
4Farmer(2000), among others, use an alternative approach.
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3.2 Efficiency and Social Optimality

The main concern in this paper is Pareto efficiency. Other two related con-

cepts are dynamic efficiency and social optimality. We discuss them separately.

We first give the concepts of allocation and program.

Allocation: A sequence of nonnegative vectors {at, bt,Kt, St, Rt}t∈N is called

an allocation, if it satisfies the conditions of feasibility: K0 = K0, S0 = S0, and

for any t ∈ N,

Ntat +Nt−1bt +Kt+1 ≤ F t(Kt, Nt, Rt),

St+1 = G(St −Rt).

Denote the set of all allocations by A . For any allocation A = {at, bt,Kt, St, Rt}t∈N,

and any t ∈ N−, denote the utility of generation-t under A as Ut(A).

Program: A sequence of nonnegative vectors {Ct,Kt, St, Rt}t∈N is called a

program, if it satisfies the conditions of feasibility: K0 = K0, S0 = S0, and for

any t ∈ N,

Ct +Kt+1 ≤ F t(Kt, Nt, Rt),

St+1 = G(St −Rt).

Denote the set of all programs by P.

For any allocation {at, bt,Kt, St, Rt}t∈N, the program {Ct,Kt, St, Rt}t∈N,

where

Ct = Ntat +Nt−1bt, ∀t ∈ N,

is called its corresponding program. Here, at, bt, and Ct are the consumption

of each young man, the consumption of each old man, and the aggregate con-

sumption at time t, respectively.

Pareto improvement: An allocation A is Pareto-improved by another alloca-

tion A′ if

Ut(A) ≤ Ut(A′), ∀t ∈ N−,

with at least one inequality being strict.

Pareto efficiency: An allocation is Pareto-efficient, if it cannot be Pareto-

improved by any allocation.
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The other concept is dynamic efficiency.

Dynamic improvement: A program {Ct,Kt, St, Rt}t∈N is dynamically im-

proved by another program {C ′
t,K

′
t, S

′
t, R

′
t}t∈N, if

Ct ≤ C ′
t, ∀t ∈ N,

with at least one inequality being strict.

Dynamic efficiency5: A program is dynamically efficient if it cannot be dy-

namically improved by any program.

An allocation is dynamically efficient if its corresponding program is dynam-

ically efficient.

Clearly, dynamic efficiency is weaker than Pareto efficiency. But, the con-

verse is not universally true, even if the allocation is an equilibrium allocation

(regarding equilibrium, see subsection 3.3 below). Here is a counterexample,

the essence of which is the same as in the Hilbert’s infinite Hotel paradox.

There is no natural resource, no population growth, and no technological

progress. The production function is F (K,L) = K + L, the utility function is

U(a, b) = a+ b, and the initial endowment of capital of the ancestor is K0 = 1.

Then the equilibrium allocation (at, bt, kt)t∈N (the corresponding price system

is rt ≡ 0, ωt ≡ 1) is dynamically efficient, where

at = 1, ∀t ∈ N,

b0 = 1, bt = 0, ∀1 ≤ t ∈ N,

k0 = 1, kt = 0, ∀1 ≤ t ∈ N.

But it is not Pareto-efficient, because it can be Preto-improved by the following

allocation (a′t, b
′
t, k

′
t)t∈N:

a′t = 0, ∀t ∈ N,

b′0 = 2, b′t = 1, ∀1 ≤ t ∈ N,

k′0 = 1, k′t = 0, ∀1 ≤ t ∈ N,
5Some authors call it the dynamic efficiency in the aggregate. See, for example, Miao

(2020).
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which is itself Pareto-efficient6.

The third concept is social optimality, which is concerned with measuring

social welfare. The social welfare is typically measured by a social welfare func-

tional. In most cases, this functional takes the form of a weighted sum of

utilities across generations7: given a sequence of positive numbers as weights

λ = (λt)t∈N− , for any A ∈ A , the social welfare functional is defined as

Wλ(A) =
∞∑

t=−1

λtUt(A).

The most commonly used weights follow an exponential form: for any t ∈ N−,

λt = εt, where ε ∈ (0, 1) is known as the social discount factor.

In this paper, we only consider the specific weights of this exponential form,

and simply denote it as Wε.

In particular, if for any t ∈ N, the utility function for generation-t is of the

form U(at, bt+1) = u(at) + ρu(bt+1), and the utility function for the ancestor

is ρu(b0), where u is some smooth, concave, and strictly increasing function,

then, for any ε ∈ (0, 1), the social welfare functional Wε can be simplified to a

reduced form: for any A = (at, bt,Kt, St, Rt)t∈N ∈ A ,

Wε(A) = ρu(b0) +

∞∑
t=0

εt+1 (u(at) + ρu(bt+1)) =

∞∑
t=0

εt(εu(at) + ρu(bt)).

Social optimality: An allocation is socially optimal with respect to a social

welfare functional Wε for some ε ∈ (0, 1) if it maximizes Wε over A .

Obviously, Pareto efficiency is weaker than social optimality. But the con-

verse is not universally true, even under arbitrary weights.

Social optimality can serve as a useful tool for assessing Pareto efficiency,

while also holding intrinsic significance in its own right. From a societal per-

6This assertion can be proved by a lemma similar to Lemma 3 in the Appendix. It states

that an allocation can be Pareto-improved if and only if the ancestor can be made strictly

better off without making anyone else worse off. In allocation (a′t, b
′
t, k

′
t)t∈N, the ancestor’s

consumption is 2, which is already the maximum of the output at time t = 0 and of course

cannot be improved any more.
7In certain scenarios, such a social welfare functional may not be well defined. In these

instances, an alternative approach, such as the overtaking criterion, may be employed instead.
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spective, social optimality offers a framework for determining whether a given

allocation is desirable. This criterion operates at a higher level than the Pareto

principle, which is often regarded as the most fundamental form of optimality.

Consequently, many researchers who address Pareto efficiency also consider so-

cial optimality where appropriate. In this paper, we apply the concept of social

optimality in some specific examples. However, in cases where it is difficult to

construct a suitable social welfare functional, we refrain from further analysis.

3.3 Equilibrium

With the final good as the numéraire (with price set to 1), the prices of

the physical capital, labor and the natural resource at time t ∈ N are denoted

as rt, ωt, and pt, respectively, and the consumption of each young individual

and the consumption of each old individual at time t are denoted as at and bt,

respectively.

Equilibrium: A price system and an allocation, {rt, ωt, pt; at, bt,Kt, St, Rt}t∈N,

with (1+rt, ωt, pt, at, bt,Kt, St, Rt) ∈ R8
+ for any t ∈ N, is called a dynamic equi-

librium (or simply an equilibrium), if for any t ∈ N,

(at, bt+1,Kt+1/Nt, (St −Rt))

∈ arg max
(a,b,s,X)

{U(a, b)|a+ s+ ptX/Nt ≤ ωt; b = (1 + rt+1)s+ pt+1G(X)/Nt} ;

(Kt, Nt, Rt) ∈ arg max
(K,L,R)

F t(K,L,R)− (1 + rt)K − ωtL− ptR;

Kt+1 = F t(Kt, Nt, Rt)−Ntat −Nt−1bt, St+1 = G(St −Rt).

It’s easy to verify that along the equilibrium path {rt, ωt, pt; at, bt,Kt, St, Rt}t∈N,

it holds that for any t ∈ N,

1 + rt+1 =
pt+1G

′(St −Rt)

pt
, (1)

which is the no-arbitrage condition, implying that the rates of return on in-

vestments in any assets (including physical capital and natural resource) are

equal.
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This no-arbitrage condition can be referred to as the generalized Hotelling

rule. It reduces to the classical Hotelling rule (Hotelling(1931)) when G(x) = x,

corresponding to the case of exhaustible resources.

Existence of equilibrium: Concerning the existence of the equilibrium, it is

easy to see that the following basic assertion holds true, which we present as a

lemma.

Lemma 1. An equilibrium exists if and only if the following system of equa-

tions for (at, bt,Kt, St, Rt)t∈N with K0 = K0, S0 = S0 has a positive solution:

F t
K(Kt+1, Nt+1, Rt+1) =

F t+1
R (Kt+1, Nt+1, Rt+1)

F t
R(Kt, Nt, Rt)

G′(St −Rt),

F t
K(Kt+1, Nt+1, Rt+1) =

Ua(at, bt+1)

Ub(at, bt+1)
,

F t(Kt, Nt, Rt) = Ntat +Nt−1bt +Kt+1,

Nt−1bt = KtF
t
K(Kt, Nt, Rt) + StF

t
R(Kt, Nt, Rt),

St+1 = G(St −Rt).

The first equation is the previously mentioned generalized Hotelling rule (1); the

second reflects the equality of MRS (marginal rate of substitution) and MRT

(marginal rate of transformation) in each period; the third is the feasibility

condition; the fourth indicates that older people consume all of their assets; and

the fifth describes the dynamic equation for the resource stock.

Because (Nt)t∈N is given exogenously, and (at, bt)t∈N can be derived from

(Kt, St, Rt)t∈N, then, the above system of equations for (at, bt,Kt, St, Rt)t∈N

can be equivalently transformed to a system of equations for (Kt, St, Rt)t∈N.

According to the implicit function theorem, under certain conditions (e.g., the

corresponding Jacobian matrix is nondegenerate), explicit recursive equations

can be derived:

Kt+1 = φ(Kt, St, Rt, Nt, Nt+1),

St+1 = G(St −Rt),

Rt+1 = ψ(Kt, St, Rt, Nt, Nt+1),

where φ,ψ are some functions. In this case, an equilibrium exists, if and only if
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there exists an R0 > 0, ensuring the entire trajectory of (Kt, St, Rt)t∈N remains

in R3
+
8.

Although this lemma is quite evident, it points to a fundamental approach

for identifying equilibrium. In the subsequent three examples in section 5, the

search for equilibrium follows this approach.

3.4 Categories of OLG Economies

In this subsection, we emphasize that, under the general framework outlined

above, all economies can be categorized into two groups: Group I: economies

where no equilibrium exists; and Group II: economies where equilibria exist

(which may be unique).

Both of these groups are non-empty. To illustrate, consider the following

two OLG economies, which differ only in their production functions. The initial

capital and resource stocks are given, with no technological progress or popu-

lation change. The utility function is U(a, b) = ln a + 1
2 ln b, and the resource

regeneration function is G(x) = 3x. The production functions for each economy

are as follows:

Economy 1: F (K,L,R) = (KLR)1/3;

Economy 2: F (K,L,R) = 3(K−1 + L−1 +R−1)−1.

Then Economy 1 has a unique equilibrium, whereas Economy 2 has no equi-

librium9.

Next, let us consider an economy belonging to Group II, which means that

equilibria exist in this economy. Now, if we take any one of these equilibria, we

ask: Is it efficient?

To reframe the issue: given an equilibrium, is it efficient? How can we assess

its efficiency? Is there a criterion for evaluating it? These are the primary

concerns of this paper.

8At times, this dynamical system can be further transformed to a dynamical system of

(kt, st, zt)t∈N, where kt, st, zt are the capital, resource stock, and resource extraction per

effective labor.
9See Proposition 8.
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From this perspective, assuming the existence of equilibrium in a general

OLG economy is reasonable. However, for a specific and concrete economy,

whether it belongs to Group I or Group II is already determined, so assuming

the existence of equilibrium is no longer appropriate.

We do not conduct further discussion about the existence of the equilibrium

in general framework10.

For simplicity, we say the equilibrium is dynamically efficient (Pareto-efficient),

if the corresponding equilibrium allocation is dynamically efficient (Pareto-

efficient).

4 General Results

Given an equilibrium of the above economy {rt, ωt, pt; at, bt;Kt, St, Rt}t∈N ,

the question we are concerned with is: is it efficient? In order to answer this

question, we first need to introduce some basic notations. Afterward, we will

provide some criteria to assess efficiency.

For any t ∈ N, denote the total output as

Yt = F t(Kt, Nt, Rt).

For any t ∈ N+, define the market discount factor from time t to time 0 as

Dt =

t∏
s=1

(1 + rs)
−1,

and set D0 := 1. For convenience, let D−1 = 1 + r0.

We know that by the generalized Hoteling rule, for any t ∈ N,

Dt+1pt+1G
′(St −Rt) = Dtpt.

For any t ∈ N, denote the total value of assets held by all the old people at

time t as

Vt = (1 + rt)Kt + ptSt,

10For further studies concerning the existence of equilibrium, refer to Galor (1989),

Geanakoplos (2008), among others.
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the combined total investments made by all the young people of generation-t as

Mt = Kt+1 + pt(St −Rt),

the total income from both labor and investment in natural resources of generation-

t as

It = ωtNt +
pt+1

1 + rt+1
St+1 − pt(St −Rt).

At time t, the old people hold the assets (Kt, St). Through market transac-

tions, they can obtain the total revenue Vt and consume it. Clearly, Vt = Nt−1bt.

For any t ∈ N, when considering society as a whole, define the dividend as

Zt = Vt −Mt = (1 + rt)Kt −Kt+1 + ptRt.

For any t ∈ N, denote the growth rate of total income and the growth rate

of the physical capital stock (the growth rate of capital, for short) at time t by

it =
It
It−1

− 1, jt =
Kt+1

Kt
− 1,

respectively.

Of course, if there is no natural resource, the above concepts reduce respec-

tively to

Vt = (1 + rt)Kt, Mt = Kt+1, It = ωtNt, Zt = (1 + rt)Kt −Kt+1.

4.1 Main Criteria

We discuss the dynamic efficiency and Pareto efficiency separately.

4.1.1 Dynamic Efficiency

We provide a criterion for dynamic efficiency.

Theorem 1. The equilibrium is dynamically efficient, if

lim
t→∞

DtVt = 0. (2)

Remark 1. Condition (2) is the Malinvaud-type condition. Malinvaud

(1953) originally formulates it for cases without natural resources. Mitra (1978)
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extends Malinvaud’s result to cases with exhaustible resources. We further

extend it to cases with any type of natural resources. This condition means

that the total wealth is eventually exhausted.

In order to get the converse of the above theorem, we make the following

assumptions:

A1. The regeneration function for the natural resource is linear.

A2. The natural resource is important in production relative to labor, mean-

ing that11

lim
t→∞

ptRt

ωtNt
> 0.

Theorem 2. Under assumptions A1,A2, if the equilibrium is dynamically

efficient, then,

lim
t→∞

DtVt = 0.

Remark 2. Mitra (1978) obtains this result for the case of exhaustible

resources. We extend it to cases involving natural resources with arbitrary

linear regeneration functions.

4.1.2 Pareto Efficiency

We provide a criterion for Pareto efficiency.

Theorem 3. The equilibrium is Pareto-efficient if

lim
t→∞

DtωtNt = 0. (3)

Remark 3. Homburg (1992) first introduced condition (3) without con-

sidering natural resources12. We extend it to cases involving natural resources.

The condition means that all income derived from labor is eventually exhausted.

11A stronger version of this condition is

inf
t∈N,(Kt,Nt,Rt)∈R3

+

RtF t
R(Kt, Nt, Rt)

F t(Kt, Nt, Rt)
> 0.

That is, the minimum income share of natural resource at all times is away from zero.
12See Theorem 1 on p.9 in Homburg (1992), which excludes natural resources, although he

later addresses land in subsequent chapters.
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To some extent, we can say that the criterion in Theorem 3 involves com-

paring the growth rate of income from labor (e.g., wages) with the interest rate.

Clearly, condition (3) is weaker than

lim
t→∞

1 + i′t
1 + rt

< 1,

where i′t = (ωtNt)/(ωt−1Nt−1)− 1 is the growth rate of total wages.

And obviously, condition (3) is also weaker than the Wilson-type condition:

∞∑
t=0

DtYt <∞.

We now provide a criterion for Pareto inefficiency. We need the following

assumption.

A3. The technological progress is Harrod-neutral, that is, for any t ∈ N,

F t(K,L,R) = F (K,BtL,R) for some function F , which is first-order homoge-

neous, smooth, concave, and strictly increasing with respect to each element;

and Bt = (1 + ν)t, Nt = (1 + n)t, where ν ≥ 0, n > −1 are constants;

supt zt < ∞; lim
k→∞

fk(k, z) < µ =: (1 + ν)(1 + n) uniformly for z in any

bounded interval; and either lim inf
t→∞

kt > 0, or fk(0, z) < ∞ for any z ≥ 0,

where f(k, z) = F (k, 1, z), kt = Kt/(BtNt), zt = Rt/(BtNt)
13.

Theorem 4. Under assumptions A3, the equilibrium is Pareto-inefficient if

lim
t→∞

1 + jt
1 + rt

> 1. (4)

Remark 4. This result implies roughly that if the growth rate of the capital

stock exceeds the interest rate in the long run, the economy experiences overac-

cumulation of capital, leading to inefficiency. This idea first appeared in Phelps

(1961) in the context of a Ramsey economy without natural resources. For the

OLG economy, AMSZ (1989) initially presented this criterion, also without con-

sidering natural resources. We extend it to cases where natural resources are

taken into account under some conditions on the production functions.

13The condition supt zt < ∞ means that the resource extraction per effective labor is

bounded above. A stronger version is supt St/(BtNt) < ∞, which is determined exogenously

by the regeneration function, technological progress, and the population growth.
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Remark 5. (Further discussion on AMSZ (1989)) AMSZ (1989) introduces

the net dividend criterion for Pareto inefficiency, stating that an equilibrium

allocation is Pareto-inefficient if

Zt

Mt
≤ −ϵ, ∀t ∈ N, (5)

for some ϵ > 0. This is equivalent to

1 + jt
1 + rt

≥ 1 + ϵ′, ∀t ∈ N,

for some ϵ′ > 0.

Clearly, our condition (4) is weaker than (5) of AMSZ (1989). Instead of re-

quiring the capital growth rate to consistently exceed the interest rate through-

out the entire process of economic development, our condition only demands

this in the long run, as time approaches infinity. What is the intuition behind

our result? From a certain point in time, say T , onward, if the capital growth

rate exceeds the interest rate, this is sufficient to ensure inefficiency. There is

no need to impose this condition from the very beginning (i.e., T = 0). The

portion of the equilibrium allocation before T can remain unchanged, while the

allocation after T can be Pareto improved by reducing capital and increasing

consumption. This improvement is possible as long as the capital growth rate

continues to exceed the interest rate from time T onward.

AMSZ (1989) also presents the net dividend criterion for Pareto efficiency,

stating that an equilibrium allocation is Pareto-efficient if

Zt

Mt
≥ ϵ, ∀t ∈ N, (6)

for some ϵ > 0. This is equivalent to

1 + jt
1 + rt

≤ 1− ϵ′, ∀t ∈ N,

for some ϵ′ > 0. However, Chattopadhyay (2008) disproves this criterion by

providing a counterexample14.

14After adding an additional condition, condition (6) is really sufficient for the Pareto

efficiency of the equilibrium. See Corollary 3 below.
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At the end of this subsection, we attempt to investigate the converse of

Theorem 3 to some extent.

Theorem 3 gives a criterion of Pareto efficiency in terms of income from

labor (i.e., the wages), but, it is not necessary15.

Now, we try to provide a criterion for Pareto inefficiency in terms of income.

However, we find that we need to modify the income from labor to the total

income, and compare the growth rate of the total income with the interest rate,

which is similar to the criterion in Theorem 4 comparing the growth rate of

capital and the interest rate.

Additionally, to derive a concise form of such a criterion, here we only con-

sider the case of log-linear utility function16. But the regeneration and pro-

duction functions remain arbitrary, ensuring that the result is still relatively

general.

Theorem 5. Suppose U(a, b) = ln a+ ρ ln b, where ρ ∈ (0, 1) is a constant.

Then, the equilibrium is Pareto-inefficient if

lim
t→∞

1 + it
1 + rt

> 1. (7)

Remark 6. Condition (7) implies that if total income grows too rapidly,

eventually surpassing the interest rate in the long run, valuable resources will

remain underutilized, leading to inefficiency. This introduces a new criterion for

assessing Pareto inefficiency. The underlying mechanism in this new criterion is

the same as in the Hilbert’s infinite Hotel paradox. It will be applied to prove

the Pareto inefficiency of equilibrium in an example involving a quadratic regen-

eration function of the resource, where assumption A3 is not satisfied, making

the criterion in Theorem 4 insufficient to guarantee the Pareto inefficiency of

the equilibrium.

15Rhee (1991) presents a counterexample for an OLG economy with land.
16Other forms of utility functions can be considered, but the resulting formulas would be

complex and less elegant, so they are not presented here.
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4.2 Corollaries

From the above theorems, we immediately have the following corollaries.

Corollary 1. Under the assumptions A1,A2, the equilibrium is Pareto-

efficient if and only if lim
t→∞

DtVt = 0.

Remark 7. Under A1,A2, the condition lim
t→∞

DtVt = 0 is a complete

characterization for Pareto efficiency of the equilibrium.

Corollary 2. If

lim
t→∞

Rt+1

RtG′(St −Rt)
< 1, (8)

lim
t→∞

ptRt

ωtNt
> 0, (9)

then, the equilibrium is Pareto-efficient.

Remark 8. Condition (8) indicates that for large t,

Rt+1

Rt
< G′(St −Rt),

which means that the growth speed of harvesting is lower than the marginal

regeneration capacity. In other words, the natural resource is not extracted too

quickly; condition (9) means that in the long run, in production, the resource

share is not nil, compared with the labor share. Condition (9) is weaker than

the assumption A2.

Corollary 3. If

lim
t→∞

1 + jt
1 + rt

< 1, (10)

lim
t→∞

(1 + rt)Kt

ωtNt
> 0, (11)

then, the equilibrium is Pareto-efficient.

Remark 9. Roughly speaking, condition (10) indicates that the growth rate

of capital is less than the interest rate, which can be seen as the reverse inequality

of condition (4); condition (11) means that the physical capital is important in

production relative to labor. This result can be seen as the converse of Theorem

4 to some extent and also as a modified version of the dividend criterion for

Pareto efficiency of AMZS (1989)17.

17See Remark 5.
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By combining Theorem 4 and Corollary 3, we can infer that the long-term

relationship between the growth rate of capital and the interest rate is cru-

cial in determining economic efficiency. Roughly, if the growth rate of capital

consistently exceeds the interest rate in the long run, it may result in over-

accumulation of capital, leading to inefficiency. Conversely, if the growth rate

of capital remains below the interest rate in the long run, capital accumulation is

more controlled, promoting efficiency. This conclusion aligns with our intuitive

understanding. In summary, comparing the long-term growth rate of capital

to the interest rate provides a meaningful approach to assessing economic ef-

ficiency. Of course, for rigorousness, certain preassumptions would need to be

made.

Corollary 4. Under assumption A3, furthermore, suppose that as t→ ∞,

Kt

BtNt
→ k∗ > 0, rt → r∗ > −1,

ωt

Bt
→ ω∗ > 0,

where k∗, r∗, ω∗ are constants. Then, the equilibrium is Pareto-efficient if r∗ >

n′; it is Pareto-inefficient if r∗ < n′, where n′ = (1+ ν)(1+n)− 1 is the growth

rate of capital in the long run.

Remark 10. Theorems 1, 3, 4, and 5, and Corollaries 3 and 4 remain

valid in the absence of natural resources. This is because the proofs of these

results do not rely on the assumption that “the production function at any

time is strictly increasing with respect to the natural resource.” (See subsection

3.1 The Economy.). However, Theorem 2 does require this assumption for its

validity.

5 Applications

In this section, we apply the above general criteria to several examples where

the regeneration function is either linear or quadratic.

The quadratic regeneration function is the simplest model for illustrating the

characteristic that any renewable resource has a finite environmental carrying

capacity. Consequently, it is widely used in resource economics.
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In contrast, the linear regeneration function is typically used for nonrenew-

able resources, resources that degenerate exponentially, or idealized renewable

resources with infinite environmental carrying capacity.

In all of these concrete examples, we first need to identify the equilibrium

(or equilibria, if multiple exist) and then evaluate its efficiency. This is where

our criteria come into play. While finding the equilibrium can be challenging,

our primary focus is on assessing its efficiency.

Moreover, none of these examples is trivial; each represents an intriguing

model in resource economics, highlighting some important features of resource

use. Specifically, there are three models presented here. A simplified version of

the first model appeared in Agnani et al. (2005); the other two are original to

this paper.

In all examples in this section, we assume that the utility function is as

follows: U(a, b) = ln a+ ρ ln b, where ρ ∈ (0, 1) is a constant.

5.1 Linear Regeneration Function, Cobb–Douglas Produc-

tion Function

Assume

G(x) = ηx, F t(K,L,R) = AtK
αLβRγ , ∀t ∈ N,

where At > 0, η > 0, 0 < α, β, γ < 1 are constants, satisfying α + β + γ = 1.

The parameter η can be called the intensity of the regeneration of the resource.

Agnani et al. (2005) investigate the case of an exhaustible resource where

η = 1. However, they implicitly assume the existence of equilibrium and further

assume that the economy follows an exact balanced growth path, with both

At and Nt growing at exogenously given rates. Under such narrowly defined

conditions, they discuss issues of Pareto efficiency, sustainability, and social

optimality.

In contrast, we rigorously prove the existence and uniqueness of equilibrium,

as well as its Pareto efficiency and social optimality, while also examining the

sustainability issue in a more general context.
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Mourmouras (1991) demonstrates the existence of equilibrium and addresses

sustainability in the absence of technical progress and population change.

Our results in this subsection fully encompass both Agnani et al. (2005) and

Mourmouras (1991).

For use in the sequel, let θ = ρβ/(1 + ρ), δ = 1 − τ , and τ ∈ (0, 1) is

determined uniquely by

τ =
γ + ατ

θ + γ + ατ
.

5.1.1 Equilibrium Existence, Uniqueness and Efficiency

By the definition of equilibrium, one can easily verify that the equilib-

rium exists and is unique if and only if the following system of equations for

(Kt, St, Rt)t∈N with K0 = K0 and S0 = S0 has a unique positive solution:

Kt+1 =
Yt
Rt

[(θ + γ)Rt − γSt] , (12)

St+1 = η(St −Rt), (13)

Rt+1 =
η

α
[(θ + γ)Rt − γSt] , (14)

where Yt = AtK
α
t N

β
t R

γ
t . And, obviously, this system of equations has a

unique positive solution if and only if the planar difference dynamical system

for (St, Rt)t∈N with S0 = S0, described by (13) and (14), has a unique positive

solution.

Following this line of reasoning, we can derive

Proposition 1. The equilibrium exists and is unique, in which for any

t ∈ N, Ntat = β
1+ρYt, Nt−1bt = (α + γ/τ)Yt, Rt = τSt, Kt+1 = αδYt, where

Yt = AtK
α
t N

β
t R

γ
t .

Remark 11. The resource extraction rate is constant τ , and the total

consumption of the young, the total consumption of the old, and the investment

in capital are all proportional to the total output, each by a constant ratio.

Proposition 2. The equilibrium is Pareto-efficient.

Remark 12. While the existence and uniqueness of equilibrium are ex-

pected, the Pareto efficiency result is surprising. This sharply contrasts with
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the classical Diamond OLG model without natural resources, which can be seen

as a special case of our model when γ = 0.

To explain the sharp contrast between the cases of γ > 0 and γ = 0, we

compare the growth rate of capital and the interest rate.

Notice that in the equilibrium of this economy, for any t ∈ N,

1 + jt
1 + rt

=
Kt+1

(1 + rt)Kt
=
Kt+1

αYt
= δ.

This implies that the growth rate of capital is always lower than the interest

rate, preventing overaccumulation of capital.

In contrast, in the classical Diamond model, (where assumption A3 is sat-

isfied), for any t ∈ N,
1 + jt
1 + rt

=
θ

α
.

Therefore, two cases may arise. If α > θ, then, the growth rate of capital is

always lower than the interest rate, preventing overaccumulation. However, if

α < θ, then the growth rate of physical capital is always higher than the interest

rate, leading to capital overaccumulation.

5.1.2 Social Optimality

We make an assumption:

A4. At = (1 + g)t, Nt = (1 + n)t, ∀t ∈ N, where g ≥ 0, n > −1 are

constants.

Proposition 3. Under A4, the equilibrium allocation is socially optimal

with respect to Wδ.

In the previous subsection, we demonstrated Pareto efficiency without as-

sumption A4. With this assumption, however, we can derive a stronger result.

Here, δ represents the social discount factor embedded in the market system,

whereas ρ corresponds to the individual discount factor.

The social discount factor is determined by the aggregation of individual

discount rates across all economic agents in the economy, reflecting the under-

lying economic structure, including aspects such as resource availability and the

relative significance of labor.
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Furthermore, δ increases with respect to ρ, indicating a positive correlation

between the social and individual discount factors.

Which is larger, δ or ρ? The answer primarily depends on the labor share,

β. If β is sufficiently small, then δ < ρ; if β is sufficiently large, then δ > ρ.

Specifically, when β = 0, we have δ = 0, and when β = 1, we have δ = 1. This

suggests that the greater the role of labor in production, the less the “social

planner” discounts the future.

Additionally, because δ = 1 − τ , where τ represents the optimal resource

extraction rate in the market, a heavier discounting of the future by the “social

planner” implies more rapid resource extraction.

5.1.3 Sustainability

Denote the output per capita at time t as yt = Yt/Nt. Because

Yt+1 = At+1(αδYt)
αNβ

t+1R
γ
t+1,

then, yt+1 = mty
α
t , where

mt ∼
At+1N

α
t

Nα+γ
t+1

(ηδ)γt.

Clearly, the behavior of the economy depends on the long-term behavior

of mt. If lim
t→∞

mt = ∞, the economy grows without bound. If lim
t→∞

mt = m

for some m > 0, the economy converges to a finite level. If lim
t→∞

mt = 0, the

economy contracts, leading to a collapse. If (mt)t∈N does not converge, the

economy exhibits fluctuations.

In particular, under A4, we have

mt ∼ ht, h := (1 + g)

(
ηδ

1 + n

)γ

.

Here, h is a composite index, indicating the extent of sustainability. If h > 1,

the economy expands without bound. If h = 1, the economy converges to a

finite level. If h < 1, the economy contracts.

For example, for a given technical growth rate g > 0, if the resource share γ

is sufficiently small, then the economy will expand without bound.
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For given g, n, η, γ, if the discount factor ρ or the labor share β is sufficiently

small, then the resource harvesting rate τ is sufficiently close to 1, and δ is

sufficiently low, leading to h < 1, and consequently, the economy will contract.

5.2 Linear Regeneration Function, CES Production Func-

tion

Now, consider other types of CES functions beyond Cobb-Douglas. More

precisely, assume G(x) = ηx, and for any t ∈ N,

F t(K,L,R) = (αKσ + βLσ + γRσ)
1/σ

, Nt = (1 + n)t,

where18 0 ̸= σ < 1, η > 0, n ≥ 0, 0 < α, β, γ < 1 are given constants, satisfying

α+ β + γ = 1.

To the best of our knowledge, this model in resource economics is novel and

has not been covered in existing literature.

Denote the capital, resource stock, and resource extraction per capita re-

spectively as

kt =
Kt

Nt
, st =

St

Nt
, zt =

Rt

Nt
.

It is easy to see that the equilibrium exists if and only if the following

three-dimensional difference dynamical system D of (kt, st, zt)t∈N with given

k0 > 0, s0 > 0 has positive solution:

kt+1 =
1

1 + n
(αkσt + β + γzσt )

(1−σ)/σ

[
θ − γ(st − zt)

z1−σ
t

]
, (15)

st+1 =
η

1 + n
(st − zt), (16)

zt+1 =
1

1 + n

( η
α

)1/(1−σ) zt
αkσt + β + γzσt

[
θ − γ(st − zt)

z1−σ
t

]
, (17)

where θ = ρβ/(1 + ρ).

18When σ = 0, it will reduce to the Cobb–Douglas case, which is fully analyzed in subsection

5.1. In this subsection, we focus exclusively on the case where σ ̸= 0, except in subsubsection

5.2.3, where we discuss the role of σ in shaping the behavior of the economy.
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Clearly, any positive solution of D must satisfy the feasibility condition that

for any t ∈ N,

(st, zt) ∈ Θ :=

{
(s, z)

∣∣∣∣0 < z < s < z +
θ

γ
z1−σ

}
,

and the limiting condition: there exist k̂, ŝ, ẑ ∈ [0,∞] such that as t → ∞,

kt → k̂, st → ŝ, zt → ẑ. All other paths will cross out of the region Θ within a

finite time, leading to system collapse.

There are only three possible cases: (i) ŝ = ẑ = 0; (ii) ŝ, ẑ ∈ (0,∞); (iii)

ŝ = ẑ = ∞, and correspondingly, the equilibrium is called equilibrium of type

I, type II, and type III, respectively. And in any case, there exists a ϵ ∈ [0, θ]

such that

lim
t→∞

st − zt

z1−σ
t

=
θ − ϵ

γ
. (18)

This ϵ can be interpreted as a measure of the speed of resource harvesting,

referred to as the harvesting speed indicator, for short.

For the steady state of D , one can easily obtain the following result, which

we present as a lemma. For convenience, let

ν :=
ρ

1 + ρ

[(
ησ

α

)1/(1−σ)

− 1

]
.

Clearly, ν > (=, <)1 if and only if α < (=, >)ησ
(
2 + ρ−1

)σ−1
.

Lemma 2. If
1 + n

η
< min {1, ν} (19)

then, there exists a unique steady state of D , which is a saddle19. Otherwise,

there is no steady state.

We observe that when σ > 0, condition (19) implies that η is large, whereas

when σ > 0, condition (19) means that η lies within a certain interval, neither

too large nor too small.

Concerning the equilibrium of type II, from Lemma 2, one can easily obtain

19It can be verified by the eigenvalue method.
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Proposition 4. If the condition (19) is satisfied, the equilibrium exists and

is unique, and it is of type II and induced by the unique saddle path of D .

Otherwise, no type II equilibrium exists.

Concerning the efficiency, we have

Proposition 5. The type II equilibrium is Pareto-efficient.

Therefore, the steady state equilibrium is always Pareto-efficient if it exists.

In the sequel, we will examine the existence and efficiency of type I and

type III equilibria in two distinct cases: σ ∈ (0, 1) and σ < 0. For the sake

of completeness, when presenting results regarding the existence of equilibrium,

we will also include type II equilibria.

5.2.1 σ ∈ (0, 1)

For any k ≥ 0, define

π(k) = (1 + n)k (αkσ + β)
(σ−1)/σ

.

It is easy to verify that π is strictly increasing.

The meaning of π is as follows. For a type I equilibrium, there is a ϵ ∈ [0, θ]

such that condition (18) holds, and then, by letting t → ∞ in (15), we obtain

that the limiting capital per capita k satisfies

k =
ϵ

1 + n
(αkσ + β)(1−σ)/σ,

which implies ϵ = π(k). Therefore, π represents the one-to-one relationship

between the harvesting speed indicator and the limiting capital per capita, and

this relationship is positive. In other words, the faster the resource extraction,

the higher the limiting capital per capita.

Concerning the existence of equilibrium, we have

Proposition 6. (i) No type III equilibrium exists.

(ii) If 1+n
η < min{1, ν}, then, there exists unique equilibrium, which is of

type II.

(iii) If ν ≤ 1+n
η < 1, then, there exists a unique type I equilibrium with

limiting capital per capita being π−1(θ).
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(iv) If 1+n
η ≥ 1, then, there exists a continuum of type I equilibria. More

precisely, there exists an interval [z, z] such that any z0 ∈ [z, z] induces a type

I equilibrium. Accordingly, there exists a k ∈ (0, π−1(θ)] such that for any

k ∈ [0, k], there is a type I equilibrium of with the limiting capital per capita

being k. The more z0, the more the limiting capital per capita k.

Remark 13. If the regeneration capacity is relatively large compared with

the population growth rate and there is no steady state, then, there is a unique

equilibrium in which the resource is harvested as quickly as possible (the har-

vesting speed indicator is θ) and finally the resource stock tends to zero, and cor-

respondingly, the capital per capita tends to the largest possible value π−1(θ).

If the regeneration capacity is relatively small compared with the population

growth rate, then, there is a continuum of equilibria.

Concerning the efficiency of equilibrium, we have

Proposition 7. (i) If η > 1 + n, then the unique equilibrium is Pareto-

efficient.

(ii) If η ≤ 1+n, then, there exists a z∗ ∈ [z, z] such that for any z0 ∈ [z, z∗),

the corresponding equilibrium of type I is Pareto-efficient; for any z0 ∈ (z∗, z],

the corresponding equilibrium of type I is Pareto-inefficient. Accordingly, there

exists a k ∈ (0, k] such that for any k ∈ [0, k), the corresponding equilibrium

of type I is Pareto-efficient; for any k ∈ (k, k], the corresponding equilibrium of

type I is Pareto-inefficient.

Remark 14. This implies that if the regeneration capacity is relatively

large compared with the population growth rate, then, the unique equilibrium

is Pareto-efficient.

If the regeneration capacity is relatively small compared with the population

growth rate, the resource stock per capita will tend to zero, and there exists a

threshold for the initial resource extraction z0 (accordingly, there exist a thresh-

old for the harvesting speed indicator ϵ and a threshold for limiting capital per

capita k), below which the economy is Pareto-efficient and above which it be-

comes inefficient. In other words, the slower the resource extraction, the higher

the likelihood that the economy is Pareto-efficient.
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5.2.2 σ < 0

Denote

ϵ∗ := (1 + n)β(1− σ−1) [α(1− σ)]
−1/σ

,

α∗ := (1− σ)−1

[
(1 + n)(1− σ−1)

1 + ρ

ρ

]σ
.

Clearly, θ > (=, <)ϵ∗ if and only if α < (=, >)α∗.

Concerning the existence of equilibrium, we have

Proposition 8. (i) If 1+n
η ≥ 1, then, there exists a continuum of equilibria

of type I, each with zero limiting capital per capita.

(ii) If 1+n
η < min{1, ν}, then, there exists a unique equilibrium, which is of

type II.

(iii) If ν ≤ 1+n
η < 1, then if

α = α∗,
1 + n

η
≤ − σρ

1 + ρ
, (20)

or

α < α∗, ν =
1 + n

η
> − σρ

1 + ρ
, (21)

then there exists a unique type III equilibrium with harvesting speed indicator

θ; if

α < α∗, ν ≤ 1 + n

η
< − σρ

1 + ρ
, (22)

then there exists a continuum of type III equilibria. More precisely, there is a

ϵ∗ ∈ [ϵ∗, θ) such that for any ϵ ∈ [ϵ∗, θ], there is a type III equilibrium with

harvesting speed indicator ϵ. In all other cases, no equilibrium exists.

Concerning the efficiency of equilibrium, we have

Proposition 9. (i) If η ≤ 1 + n, then, any type I equilibrium is Pareto-

efficient.

(ii) If ν ≤ 1+n
η < 1, then, there are three cases.

First, if (20) holds, then, the unique type III equilibrium is Pareto-efficient

if −σ < 1+ρ
ρ ; it is Pareto-inefficient if −σ > 1+ρ

ρ .

Second, if (21) holds, then, the unique type III equilibrium is Pareto-efficient.
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Third, if (22) holds, then, there exists ϵ ∈ [ϵ∗, θ] such that the type III

equilibrium with harvesting speed indicator below ϵ is Pareto-efficient; whereas

any type III equilibrium with harvesting speed indicator above ϵ is Pareto-

inefficient.

Remark 15. When σ < 0, the natural resource is essential for production,

meaning that output drops to zero in its absence.

If the regeneration capacity of the resource is weak compared to the pop-

ulation growth, the resource stock per capita will tend to zero, making over-

accumulation of the resource impossible. Additionally, because the factors are

complementary, capital and the resource are closely linked in production, pre-

venting over-accumulation of capital and thereby ensuring the Pareto efficiency

of the economy.

If the regeneration capacity of the resource is strong compared to the pop-

ulation growth and there is no steady state, the resource stock per capita will

tend to infinity. And, in general, similar to the case when σ ∈ (0, 1), there

exists a threshold for the harvesting speed indicator, below which the econ-

omy is Pareto-efficient, and above which it becomes inefficient. In other words,

the slower the resource extraction, the higher the likelihood that the economy

will be Pareto-efficient. And this threshold, in principle, is concerned with the

marginal regeneration capacity.

Remark 16. Regarding the nonexistence of equilibrium. Typically, when

ν < 1+n
η < 1, and α > α∗, no equilibrium exists. This suggests that in a

typical scenario where the regeneration capacity of the resource is very strong

and the capital share excessively large, but the resource and the capital are

complementary in production, they cannot maintain a coherent relationship,

preventing the economy from following an equilibrium path.

5.2.3 Comparison Between Different σ

We know that σ ∈ (0, 1) indicates substitutability between the factors, σ <

0 indicates complementarity between the factors, and σ = 0 represents the

33



midpoint between the two.

Here, we compare the behavior of the dynamical system D under different

values of σ, including σ = 0. Specifically, we examine how varying σ influences

the system’s trajectories, equilibrium types, and overall economic efficiency. By

contrasting these cases, we gain insight into the role that σ plays in determining

the system’s stability and optimality.

In the Cobb–Douglas case where σ = 0, according to (12), (13) and (14),

the dynamical system D simplifies to

kt+1 =
1

1 + n
kαt z

γ−1
t [(θ + γ)zt − γst] ,

st+1 =
η

1 + n
(st − zt),

zt+1 =
η

α(1 + n)
[(θ + γ)zt − γst] .

From the analysis of the Cobb–Douglas case in subsection 5.1, we know that

when σ = 0, this dynamical system has a unique positive solution, and the

economy possesses a unique equilibrium, which can be of type I, type II, or

type III, depending on whether ηδ <,=, > 1 + n, respectively, and it is socially

optimal with respect to Wδ, and therefore Pareto-efficient.

For the dynamical system D , including the case σ = 0, the system behavior

changes as σ varies. Depending on other parameters, the system may exhibit

continuity in some cases, whereas in others, bifurcation may occur.

First of all, regarding the steady state, we know that for σ ̸= 0, the steady

state exists if and only if condition (18) holds, and for σ = 0, the steady state

exists if and only if ηδ = 1 + n. For σ = 0, (18) reduces to

1 + n

η
< min

{
1,

ρ

1 + ρ

(
1

α
− 1

)}
,

which is satisfied naturally when ηδ = 1 + n. In fact, noticing δ ∈ (0, 1), we

only need to verify

δ <
θ

β

β + γ

α
,

which follows from
α

θ + γ + ατ
=

ατ

γ + ατ
<
β + γ

β
.
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Therefore, regarding the steady state, the dynamical system D exhibits conti-

nuity with respect to σ.

In the sequel, we present some examples to further illustrate the role of σ in

the system’s behavior.

Example 1. Suppose α < 1/(2e), and

ρ

1 + ρ

β + γ

α
<

1 + n

η
< δ.

For σ = 0, because ηδ > 1 + n, then, there exists a unique trajectory of

D , along which each of kt, st, zt tends to infinity, all other trajectories lead

to system collapse within a finite time, and correspondingly, there is a unique

equilibrium of type III, which is of course Pareto-efficient.

For σ > 0 near σ = 0 locally, becuse ν < 1+n
η < 1, then, there exists a

unique trajectory of D , along which (kt, st, zt) tends to (π−1(θ), 0, 0), all other

trajectories lead to system collapse within a finite time, and correspondingly,

there is a unique equilibrium of type I, which is Pareto-efficient.

For σ < 0 near σ = 0 locally, we have ν < 1+n
η < 1. In addition, locally

near σ = 0, α∗ is sufficiently close to 1/e, and thus, locally near σ = 0, we have

α < α∗. But, locally near σ = 0, it does not hold that

1 + n

η
> − σρ

1 + ρ
.

Therefore, by Proposition 8, there is no equilibrium. All trajectories of D lead

to system collapse within a finite time.

Thus, in this case, bifurcation occurs at σ = 0.

Example 2. Suppose η < 1 + n. Then, locally near σ = 0, the system

exhibits continuity. In fact, regardless of the value of σ, D has trajectories (pos-

sibly unique) converging to (k, 0, 0) for some (different) k, all other trajectories

exit the region Θ within a finite time. Correspondingly, for any σ, the economy

consistently exhibits type I equilibria. The efficiency of the equilibria manifests

differently: for σ ∈ (0, 1), there exists a threshold for the harvesting speed indi-

cator, below which the economy is Pareto-efficient, and above which it becomes

inefficient; for σ ≤ 0, all equilibria are Pareto-efficient.
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To sum up, roughly, if η > 1 + n, then the system may exhibit bifurcation

at σ = 0; on the contrary, if η < 1 + n, then the system exhibits continuity at

σ = 0.

Additionally, in general, in most cases, the economy exhibits multiple equi-

libria. However, in the Cobb-Douglas case, where all variables are in fixed

proportion, the set of equilibria reduces to a singleton.

The primary distinction between the cases σ > 0 and σ < 0 lies in the

behavior of the resource stock per capita. When σ > 0, the resource stock per

capita cannot tend to infinity and thus there is no type III equilibrium, even

if the resource regeneration capacity is very large. However, when σ < 0, this

becomes possible. Additionally, when σ < 0, the possibility of nonequilibrium

arises.

A key commonality between the cases σ ∈ (0, 1) and σ < 0 is that, roughly

speaking, the slower the resource extraction, the higher the likelihood that the

economy will be Pareto-efficient. This principle holds regardless of whether the

factors are substitutable or complementary. But, more precisely, this principle

applies to the case η < 1 + n when σ ∈ (0, 1) (the resource stock per capita

tends to zero) and to the case η > 1 + n when σ < 0 (the resource stock per

capita tends to infinity). The intuition behind this principle, within the frame-

work of general CES technology, is that whether the factors are substitutable or

complementary, they remain interconnected through a weak proportional rela-

tionship. Faster resource extraction leads to greater resource use in production,

which increases the demand for capital in the production process. Over time,

this results in higher capital accumulation, which raises the likelihood of capital

overaccumulation, potentially leading to inefficiency.

5.2.4 Comparison with Classical Diamond OLG Model

Our model in the general CES form reduces to the classical Diamond OLG

model without natural resources when γ = 0.

It’s easy to see that in this Diamond model, there exists a unique equilibrium,
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in which for any t ∈ N,

at =
β

1 + ρ
(αkσt + β)

(1−σ)/σ
,

bt
1 + n

= αkσt (αkσt + β)
(1−σ)/σ

,

(1 + n)kt+1 = θ (αkσt + β)
(1−σ)/σ

,

ωt = β (αkσt + β)
(1−σ)/σ

,

1 + rt = αkσ−1
t (αkσt + β)

(1−σ)/σ
.

In the sequel, we only consider the case, where σ < 0. Define

n∗ =:
ρ [α(1− σ)]

1/σ

(1− σ−1) (1 + ρ)
− 1, n∗ =:

[
α

(
1 +

1 + ρ

ρ

)1−σ
]1/σ

− 1.

One can check directly that −1 < n∗ < n∗.

It’s easy to verify that if n > n∗, then, lim
t→∞

kt = 0. Therefore, as t→ ∞,

1

1 + rt+1

ωt+1Nt+1

ωtNt
=

1 + n

α

k1−σ
t+1

(αkσt + β)
(1−σ)/σ

=
θ

α
k−σ
t+1 → 0,

which implies lim
t→∞

DtωtNt = 0. Then, by Theorem 3, the equilibrium is Pareto-

efficient.

In the following, suppose n < n∗. Then, the limiting capital per capita k

and the limiting interest rate r satisfy

1 + r

1 + n
= x =

α

θ
kσ,

and x is the smaller one of the two positive roots of the equation

(1 + n)σx = α (x+ β/θ)
1−σ

.

If n ∈ (n∗, n
∗), then, one can check that x > 1. Therefore, r > n. In addi-

tion, the limiting wage is positive. Therefore, by Corollary 4, the equilibrium is

Pareto-efficient.

If n < n∗, then, one can check that x < 1. Therefore, r < n. In addition,

the limiting wage is positive. Therefore, by Corollary 4, the equilibrium is

Pareto-inefficient.
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However, in the case n < n∗, when natural resources, as in our CES model,

are introduced into the economy, the economy becomes Pareto-efficient, pro-

vided that η < 1 + n.

Thus, we can conclude that in certain cases, the presence of natural resources

can enhance the efficiency of the economy, especially when the capital and the

resource are complementary in production.

At the end of this subsection, we point out that the sustainability issue in

this CES model is straightforward and thus omitted from the discussion.

5.3 Quadratic Regeneration Function

Assume G(x) = λx(1− x/B), and for any t ∈ N,

F t(K,L,R) = AtK
αLβRγ , Nt = (1 + n)t, At = (1 + g)t,

where n ≥ 0, g ≥ 0, λ > 0, B > S0, and ρ, α, β, γ ∈ (0, 1) are constants,

satisfying α+ β + γ = 1.

And assume λ and B are sufficiently large. Here, λ is the intrinsic growth

rate of the natural resource, and B is the environmental carrying capacity for

this natural resource.

As mentioned in the literature review, Krautkraemer (1999), in an OLG

economy with a natural resource but no physical capital, suggests that when the

resource’s output share is relatively small, steady-state equilibrium is Pareto-

inefficient, but does not specify how small it must be. Here, for an economy

with capital, we provide a similar but more precise result regarding the dynamic

equilibrium.

5.3.1 Existence and Uniqueness of Equilibrium

It’s easy to verify that an equilibrium exists if and only if the following

difference dynamical system for (Kt, St, Rt)t∈N with K0 = K0 and S0 = S0 has
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a positive solution:

Kt+1 =
Yt

1 + ρ

[
ρβ −

(
G(St −Rt)

G′(St −Rt)
+ ρ(St −Rt)

)
γ

Rt

]
, (23)

St+1 = G(St −Rt), (24)

Rt+1 =
RtG

′(St −Rt)

α(1 + ρ)

[
ρβ −

(
G(St −Rt)

G′(St −Rt)
+ ρ(St −Rt)

)
γ

Rt

]
, (25)

which, in turn, if and only if the planar difference dynamical system for (St, Rt)t∈N,

described by (24) and (25), with S0 = S0, has a positive solution.

This planar dynamical system has two steady states: (0, 0) and (S∗, R∗),

satisfying

R∗ = G(x∗)− x∗, S∗ = G(x∗),

where x∗ ∈ (0, B/2) is determined uniquely by

λ

(
α+

γ

1 + ρ

)(
1− x∗

B

)
− α =

ρβλ

1 + ρ

(
1− x∗

B/2

)[
λ

(
1− x∗

B

)
− 1− γ

β

]
.

By the eigenvalue method20, one can see that (0, 0) is a source, to which

no feasible path converges; (S∗, R∗) is a saddle, to which a unique saddle path

converges.

Therefore, there exists a unique R0 > 0 which induces a unique path con-

verging to this saddle. The unique equilibrium then follows.

Consequently, we obtain

Proposition 10. The equilibrium exists and is unique, and the correspond-

ing path of (St, Rt)t∈N converges to a saddle.

5.3.2 Pareto Efficiency

Let

κ =
1 + ρ

ρ
α+

(
1

ρ
+

2(1 + ρ)

ρ(λ− 1)

)
γ,

which represents a weighted sum of the two capital shares: α and γ, and hence,

can be referred to as a combined capital index. Note that this index only

20The Jacobian matrix at the steady state (0, 0) has two eigenvalues bigger than 1. There-

fore, the steady state (0, 0) is a source. The Jacobian matrix at the steady state (S∗, R∗) has

two positive eigenvalues: one is smaller than 1, the other is bigger than 1. Therefore, (S∗, R∗)

is a saddle.
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concerns the intrinsic growth rate of the natural resource, not the carrying

capacity.

Proposition 1121. The equilibrium is Pareto-efficient if β < κ; it is Pareto-

inefficient if β > κ.

Remark 17. The relative magnitude of the labor share plays a crucial role.

If the labor share is less than the combined capital index, the equilibrium is

efficient; however, if the labor share exceeds the combined capital index, the

equilibrium becomes inefficient.

On the simplex A = {(α, β, γ)|α+ β + γ = 1, α, β, γ ∈ [0, 1]}, the line seg-

ment β = κ has two endpoints, the coordinates of which are (α, β, 0) and

(0, β, γ), respectively, where

α =
ρ

1 + 2ρ
, β =

1 + ρ

1 + 2ρ
, β =

1 + λ+ 2ρ

(1 + ρ)(1 + λ)
, γ =

ρ(λ− 1)

(1 + ρ)(1 + λ)
.

Recall λ is sufficiently large, then β < β.

Clearly, if β < β, then β < κ; if β > β, then β > κ. And, of course, if γ > γ,

then β < β. Then, from Proposition 9, we can easily get

Corollary 5. If β < β, then the equilibrium is Pareto-efficient; if β > β,

then the equilibrium is Pareto-inefficient.

From this corollary, we can say roughly that if the technology is capital-

intensive (either the physical capital or the natural capital), then the economy is

efficient; on the contrary, if the technology is labor-intensive, then, the economy

is inefficient.

In particular, suppose there is neither technical growth nor population growth.

Then Kt will converge to some K∗ > 0. When β = κ, then K∗ = KGR, where

KGR is the so-called Golden Rule level of capital; when β < κ, then K∗ < KGR,

and the economy is efficient; when β > κ, then K∗ > KGR, indicating capital

overaccumulation, and the economy is inefficient.

21If γ = 0, then, this result coincides with that in the classical Diamond OLG model.
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5.3.3 Sustainability

It follows from (23) that

yt+1 ∼
(

1 + g

(1 + n)γ

)t

yαt ,

where yy = Yt/Nt is the output per capita. Based on this, we can immediately

derive the following result.

Proposition 12. If 1+ g < (1+n)γ , then the economy contracts; if 1+g =

(1 + n)γ , then the economy is sustainable in the long run; if 1 + g > (1 + n)γ ,

then the economy grows without bound.

Remark 18. Whether the economy contracts depends solely on the rate of

technical progress, population growth, and the resource share. It is independent

of the distribution between capital and labor shares.

6 Extension and Further Discussion

6.1 Multiple Resources

The main results can be easily extended to the case of multiple natural

resources, where the regeneration capacities are independent of each other. In

other words, no cross-effects are present in their regeneration. More specifically,

the scenario is as follows.

Consider multiple types of natural resources, labeled type-1, type-2,...,type-

J , where J is some natural number.

For any j = 1, ..., J , the regeneration function of type-j resource is Gj , being

smooth, concave, and nonnegative, defined on [0,∞), with properties Gj(0) = 0,

G′
j(0) ∈ (0,∞], G′

j(x) > 0, ∀x > 0.

The dynamics of type-j resource are

Sj
t+1 = Gj(S

j
t −Rj

t ),

where Sj and Rj represent the stock and extraction of type-j resource, respec-

tively.
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In this context, the total value of assets at time t becomes

Vt = (1 + rt)Kt +

J∑
j=1

pjtS
j
t ,

where pjt is the price of type-j resource at time t. The generalized Hotelling rule

holds for every type of resources. That is, for any type-j resource, we have

pjt+1G
′
j(S

j
t −Rj

t )

pjt
= 1 + rt+1, ∀t ∈ N.

In this case, the assumption A2 “the resource is important in production rel-

ative to labor” should be modified to the condition “at least one of the resources

is important in production relative to labor.”

6.2 OLG with Land

Regarding the OLG economy with land, similar results hold true. Now, the

production function is F t(K,L,X), where X is the input of land.

In an equilibrium, let pt and qt be the corresponding price of land and the

rental of land at time t, respectively.

The no-arbitrage condition implies that for any t ∈ N,

pt =
pt+1 + qt+1

1 + rt+1
,

then, Dtpt = Dt+1pt+1 +Dt+1qt+1. Therefore, lim
t→∞

Dtqt = 0, and (Dtpt)t∈N is

decreasing, and hence, there is β0 ≥ 0 such that lim
t→∞

Dtpt = β0, and for any

t ∈ N, pt = ft + βt, where

ft =
1

Dt

∞∑
s=t+1

Dsqs, βt =
β0
Dt
,

are the fundamental and the bubble of land at t, respectively.

The total value of assets is Vt = (1 + rt)Kt + pt + qt, assuming that the

quantity of land is one unit. And the total income It coincides with wages

ωtNt.

Assumption A1 is not needed. In principle, Theorems 1–5 still hold. As a

corollary of Theorem 3, if

lim sup
t→∞

qt
ωtNt

> 0, (26)
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that is, land is important in production relative to labor, then lim
t→∞

DtωtNt = 0.

Therefore, the equilibrium is Pareto-efficient.

Condition (26) is a bit weaker than the condition

lim inf
t→∞

qt
Yt

> 0,

which is used in Proposition 1 in Rhee (1991) to guarantee the Pareto efficiency

of the equilibrium.

6.3 OLG Without Capital

An economy without capital can be viewed as a special case of the general

economy with capital, as discussed in Section 3. In this scenario, capital re-

mains at zero throughout, including the initial capital endowment of ancestors.

However, the interest rate at any time t ≥ 1 still exists as a reference for agents

borrowing or lending at time t− 1, though in equilibrium, the quantity of bor-

rowing or lending is zero. In the definition of equilibrium, the interest rate at

time t = 0 can be ignored because it has no impact on anyone. The generalized

Hotelling rule (1) still holds.

From this perspective, all the main results from Sections 3 and 4 continue to

hold, except for Theorem 4, where the growth rate of capital is not well defined

and thus does not apply in this case.

As an application of Theorem 3, consider an example as follows. Suppose the

production functions are of the form: F t(L,R) = AtLf(R/L), where At > 0 is a

constant and f is smooth, concave, and satisfying f(0) = 0, f ′(0+) ∈ (0,∞], and

the regeneration function is linear: G(x) = ηx, where η > 0 is a constant. The

utility function satisfies the standard conditions such as being smooth, concave,

and meeting Inada conditions, etc. Then, analogously to Olson (1997), one can

show that the equilibrium exists (possibly multiple).

Take anyone of the equilibria. Since η−(t+1)St+1 = η−t(St − Rt), we have∑∞
t=0 η

−tRt ≤ S0, therefore lim
t→∞

η−tRt = 0.

Denote the resource extraction and resource stock per capita as zt =: Rt/Nt

and st =: St/Nt, respectively.
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Suppose

0 < lim
t→∞

η−tNt ≤ lim
t→∞

η−tNt <∞. (27)

Then, lim
t→∞

zt = 0.

In addition, since F t(Nt, Rt) = Ntat + Nt−1bt ≥ Nt−1bt = ptSt, and pt =

Atf
′(zt), then f(zt) ≥ f ′(zt)st. By letting t → ∞, and noticing f(0) = 0,

f ′(0+) ∈ (0,∞], we obtain lim
t→∞

st = 0. That is, along any equilibrium path,

the resource stock per capita converges to zero.

Now we consider the efficiency. By the generalized Hotelling rule, for any

t ∈ N, 1 + rt+1 = ηpt+1/pt, then, Dt = η−tp0/pt. Therefore, as t→ ∞,

DtYt = η−t p0
Atf ′(zt)

AtNtf(zt) = p0η
−tNt

f(zt)

f ′(zt)
→ 0,

which yields DtωtNt → 0. Then, by Theorem 3, the equilibrium is Pareto-

efficient.

In some special cases, the condition (27) is superfluous. For example, con-

sider a special case of the example in section 5.1, where α = 0, K0 = 0. In this

case, the production function at time t is F t(L,R) = AtL
βRγ .

In this case, Propositions 1, 2, and 3 still hold. The equilibrium exists and

is unique and is Pareto-efficient, in which for any t ∈ N,

Ntat =
β

1 + ρ
Yt, Nt−1bt = (θ + γ)Yt, Rt = τSt,

1 + rt+1 =
Yt+1

δYt
,

where Yt = AtN
β
t R

γ
t , τ = γ/(θ + γ), δ = 1− τ , θ = ρβ/(1 + ρ).

And, under assumption A4, the equilibrium allocation is socially optimal

with respect to the social welfare functional Wδ. That is, the equilibrium allo-

cation is the solution of the following social planner’s problem:

max

∞∑
t=0

δt (δ ln at + ρ ln bt) ,

s.t St+1 = η(St −Rt),

Ntat +Nt−1bt ≤ AtN
β
t R

γ
t .
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According to Olson (1997): “OLG equilibria differ substantially from the

outcome under a social planning exercise, and there does not exist a definitive

relation between extractions and prices in the two cases”(290). However, this

assertion is incorrect. While the equilibrium allocation may not be socially

optimal with respect to Wρ, which is considered in Olson(1997), it is indeed

socially optimal with respect to Wδ. When evaluating social optimality, the

individual discount rate should be replaced by the social discount rate, which is

embedded in the market system.

7 Conclusion

In this paper, we consider a two-period OLG model with three factors of

production: physical capital, labor, and natural resources. We discuss the issue

of Pareto efficiency of the equilibrium allocation.

Our main contribution to the literature is that we present general sufficiency

conditions and general necessary conditions for the Pareto efficiency of the equi-

librium allocation in the OLG economies with natural resources and physical

capital. In principle, we compare the growth rates of capital, income, or total

asset value with the interest rate. Our findings suggest that, broadly speaking,

if any of these growth rates is lower than the interest rate, the equilibrium is

efficient. Conversely, if any of these growth rates surpasses the interest rate, the

equilibrium becomes inefficient.

A secondary contribution is the finding that, in the case where the resource

regeneration function is linear and the production function follows a CES form

beyond Cobb–Douglas, there is generally a threshold for the resource harvesting

speed. If the harvesting speed is below this threshold, the economy operates

efficiently; if it exceeds the threshold, inefficiency arises.

Another contribution is for the case where the resource regeneration function

is quadratic. We provide a precise combined capital index and demonstrate that

if the labor share is below this index, the economy operates efficiently, whereas

if the labor share exceeds this index, the economy becomes inefficient.
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Moreover, our findings suggest that under certain conditions, natural re-

sources can enhance economic efficiency, particularly when they are comple-

mentary to physical capital in production. This highlights the potential role of

resource management in improving economic outcomes.

While our results offer important insights, they remain incomplete. We have

not provided general necessary and sufficient conditions for Pareto efficiency of

equilibrium, leaving this as an open problem for future research.

Another promising direction for future work is to explore stochastic OLG

models that account for uncertainties arising from the random variability of

natural resources and environmental conditions. Furthermore, examining gov-

ernment or institutional interventions could be critical, particularly in cases

where resource use leads to pollution that exacerbates market inefficiencies.
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Appendix

We need the following three lemmas. The proofs of Lemma 3 and Lemma 4
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are straightforward and hence omitted. One proof of Lemma 5 can be found in

Farmer et al. (2010), which uses the eigenvalues method in the planar difference

dynamical system. Here, we present another proof, which has its own interest.

Lemma 3. A program {C∗
t ,K

∗
t , S

∗
t , R

∗
t }t∈N is dynamically efficient if and

only if for any program {Ct,Kt, St, Rt}t∈N,

Ct ≥ C∗
t , ∀t ≥ 1

implies

C∗
0 ≥ C0.

Lemma 4. An allocation {a∗t , b∗t ,K∗
t , S

∗
t , R

∗
t }t∈N is Pareto efficient if and

only if for any allocation {at, bt,Kt, St, Rt}t∈N,

U(at, bt+1) ≥ U(a∗t , b
∗
t+1), ∀t ≥ 0

implies

b∗0 ≥ b0.

Lemma 5. The following two statements about {St, Rt}t∈N with given

S0 > 0 are equivalent:

(I) for any t ∈ N,

St+1 = η(St −Rt) ≥ 0,

Rt+1 =
η

α
[(θ + γ)Rt − γSt] ≥ 0;

(II) for any t ∈ N,

St = (ηδ)tS0,

Rt = τ(ηδ)tS0,

where δ, τ are defined in the beginning of subsection 5.1.

Proof of Lemma 5. One can easily verify that (II) implies (I). In the

sequel, we prove that (I) implies (II). First of all, we show that for any t ∈ N

and any n ∈ N, it holds that

xnSt ≤ Rt ≤ ynSt, (28)
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where

xn+1 =
γ + αxn

θ + γ + αxn
, x0 = 0,

yn+1 =
γ + αyn

θ + γ + αyn
, y0 = 1.

We prove (28) by use of the method of mathematical induction with respect

to n. First, obviously, (28) holds for n = 0 and any t ∈ N. Now, suppose that

(28) holds for n and any t ∈ N. Then, for any t ∈ N, notice that (28) holds for

n and t+ 1, that is,

xnSt+1 ≤ Rt+1 ≤ ynSt+1,

which is equivalent to

xn+1St ≤ Rt ≤ yn+1St,

and hence, (28) also holds for n + 1 and any t ∈ N. It follows that (28) holds

for any t ∈ N and any n ∈ N.

Next, clearly, {xn}n∈N is increasing and bounded above, and {yn}n∈N is

decreasing and bounded below, and hence, each of these two sequences has a

limit. Let lim
t→∞

xt = x, lim
t→∞

yt = y. Then, x, y ∈ (0, 1) and satisfy

x =
γ + αx

θ + γ + αx
, y =

γ + αy

θ + γ + αy
,

which implies x = y = τ . Consequently, Rt = τSt, ∀t ∈ N, which yields (I)

immediately. The proof is completed.

Proof of Theorem 1. By Lemma 3, it suffices to show that for any program

{C ′
t,K

′
t, S

′
t, R

′
t}t∈N, if C

′
t ≥ Ct, ∀t ≥ 1, then C ′

0 ≤ C0.
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In fact, taking large T ∈ N arbitrarily, we have

C ′
0 − C0

≤
T−1∑
t=0

Dt

[(
F t(K ′

t, Nt, R
′
t)−K ′

t+1

)
−
(
F t(Kt, Nt, Rt)−Kt+1

)]
+

T−1∑
t=0

Dt+1pt+1

[(
G(S′

t −R′
t)− S′

t+1

)
− (G(St −Rt)− St+1)

]
≤

T−1∑
t=0

Dt

[
(1 + rt)(K

′
t −Kt) + pt(R

′
t −Rt)− (K ′

t+1 −Kt+1)
]

+

T−1∑
t=0

Dt+1pt+1

{
G′(St −Rt) [(S

′
t − St)− (R′

t −Rt)]−
(
S′
t+1 − St+1

)}
=

T−1∑
t=0

[Dt−1(K
′
t −Kt) +Dtpt(R

′
t −Rt)]−

T∑
t=1

Dt−1(K
′
t −Kt)

+

T−1∑
t=0

Dtpt [(S
′
t − St)− (R′

t −Rt)]−
T∑

t=1

Dtpt (S
′
t − St)

≤ DTVT .

Letting T → ∞ (along some subsequence of natural numbers), we obtain C ′
0 ≤

C0. The proof is completed.

Proof of Theorem 2. Suppose G(x) = ηx, where η > 0 is some constant.

Then η−(t+1)St+1 = η−t(St −Rt), ∀t ∈ N. Therefore,

∞∑
t=0

η−tRt ≤ S0,

and the sequence (η−tSt)t∈N is strictly decreasing and hence converges to some

nonnegative number θ.

It must hold that θ = 0. Otherwise, the extra amount of resource can be

used in any period of time and produce more consumption goods, which can

be distributed to the people in that period, and all the other periods are not

affected. Then the aggregate consumption in that period is increased strictly,

and the aggregate consumptions at any other times are not changed. This

contradicts the dynamic efficiency of the equilibrium allocation. Thus, θ = 0.
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The generalized Hotelling rule implies that Dtpt = η−tp0, ∀t ∈ N. Therefore,

lim
t→∞

DtptSt = 0.

It is left to show lim
t→∞

DtKt+1 = 0. We know that for any t ∈ N,

Ct +Kt+1 = F t(Kt, Nt, Rt) = (1 + rt)Kt + ωtNt + ptRt,

where Ct = Ntat +Nt−1bt. Then,

DtCt +DtKt+1 = Dt−1Kt +DtωtNt +DtptRt.

Therefore,

t∑
s=0

DsCs +DtKt+1 = D−1K0 +

t∑
s=0

DsωsNs + p0

(
t∑

s=0

η−sRs

)
. (29)

Since
∞∑
s=0

η−sRs = S0,

and noticing assumption A2, we know that

∞∑
s=0

DsωsNs <∞,

and hence, by (29),
∞∑
s=0

DsCs <∞.

Then, once again, by (29), we get that lim
t→∞

DtKt+1 exists. We prove that this

limit is 0. Suppose not. Then there exist ε > 0 and T ∈ N such that for any

t ≥ T ,
∞∑
s=t

DsCs < ε < DtKt+1.

For any t ≥ T , let

λt =
1

ε

∞∑
s=t

DsCs ∈ (0, 1).

Then, for any t ≥ T , we have

(λt − λt+1)DtKt+1 > DtCt.
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Now, for any t ≥ T , let

K ′
t = λtKt, R′

t = λtRt, C ′
t = F t(K ′

t, Nt, R
′
t)−K ′

t+1.

We have that for any t ≥ T ,

DtC
′
t = DtF

t(K ′
t, Nt, R

′
t)−DtK

′
t+1

≥ λtDtF
t(Kt, Nt, Rt)− λt+1DtKt+1

≥ (λt − λt+1)DtKt+1 > DtCt.

Thus, C ′
t > Ct, ∀t ≥ T .

Now construct a program (C ′
t,K

′
t, S

′
t, R

′
t)t∈N as follows: for any t < T , let

(C ′
t,K

′
t, S

′
t, R

′
t) = (Ct,Kt, St, Rt);

and for any t ≥ T , let (C ′
t,K

′
t, R

′
t) be constructed as above, and (S′

t)T≤t∈N

can be constructed recursively from (R′
t)t∈N according to the recursive equation

S′
t+1 = η(S′

t −R′
t), ∀t ∈ N.

We see that (Ct,Kt, St, Rt)t∈N is dynamically improved by (C ′
t,K

′
t, S

′
t, R

′
t)t∈N.

This contradicts the assumption that (Ct,Kt, St, Rt)t∈N is dynamically efficient.

And hence, lim
t→∞

DtKt+1 = 0. The proof is completed.

Proof of Theorem 3. Suppose the equilibrium allocation A = (at, bt,Kt, St, Rt)t∈N

is not Pareto-efficient. Then there is another allocation A′ = (a′t, b
′
t,K

′
t, S

′
t, R

′
t)t∈N,

which is a Pareto improvement of A. Then we have

Ut(A′) ≥ Ut(A), ∀t ∈ N−,

with at least one inequality being strict.

For the ancestor, we have u(b′0) ≥ u(b0), which implies b′0 ≥ b0. Since

N−1b0 = (1 + r0)K0 + p0S0, then we have

N−1b
′
0 ≥ (1 + r0)K0 + p0S0. (30)

Now take t ∈ N arbitrarily. For an individual of generation-t, by the defini-

tion of equilibrium, we have

(at, bt+1, (St −Rt)) ∈ arg max
(a,b,X)

U(a, b),
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subject to

a+
b

1 + rt+1
≤ ωt +

1

Nt

(
pt+1G(X)

1 + rt+1
− ptX

)
,

then

(at, bt+1) ∈ argmax
(a,b)

U(a, b),

subject to

a+
b

1 + rt+1
≤ ωt +

1

Nt

(
pt+1G(St −Rt)

1 + rt+1
− pt(St −Rt)

)
.

Since

U(a′t, b
′
t+1) ≥ U(at, bt+1),

then

a′t +
b′t+1

1 + rt+1
≥ ωt +

1

Nt

(
pt+1G(St −Rt)

1 + rt+1
− pt(St −Rt)

)
.

In addition, since G is concave and holds the generalized Hotelling rule:

pt+1G
′(St −Rt)

1 + rt+1
= pt,

then the function pt+1G(X)
1+rt+1

− ptX of X, for given pt, pt+1, rt+1, takes its maxi-

mum at X = (St −Rt).

Therefore,

pt+1G(St −Rt)

1 + rt+1
− pt(St −Rt) ≥

pt+1G(S
′
t −R′

t)

1 + rt+1
− pt(S

′
t −R′

t).

Noticing S′
t+1 = G(S′

t −R′
t), we get

a′t +
b′t+1

1 + rt+1
≥ ωt +

1

Nt

(
pt+1S

′
t+1

1 + rt+1
− pt(S

′
t −R′

t)

)
, ∀t ∈ N,

and hence,

DtNta
′
t +Dt+1Ntb

′
t+1

≥ DtωtNt +
(
Dt+1pt+1S

′
t+1 −DtptS

′
t

)
+DtptR

′
t, ∀t ∈ N. (31)

Now take a strict inequality from either the inequality in (30) or the in-

equalities in (31). There is some ϵ > 0 such that adding this ϵ to the right-hand
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side of this inequality still preserves its validity. Then, we modify this strict

inequality by adding this ϵ to its right-hand side.

Then, for sufficiently large τ , summing the inequality (30) and the inequal-

ities in (31) for t = 0 through t = τ − 1, yields

τ−1∑
t=0

Dt(Nta
′
t +Nt−1b

′
t) +DτNτ−1b

′
τ

≥ (1 + r0)K0 +

τ−1∑
t=0

Dt(ωtNt + ptR
′
t) +DτpτS

′
τ + ϵ. (32)

Noticing the zero maximum profit for any firm and the conditions of feasibility,

we have that for any t ∈ N,

(1 + rt)K
′
t + ωtNt + ptR

′
t ≥ F t(K ′

t, Nt, R
′
t) ≥ Nta

′
t +Nt−1b

′
t +K ′

t+1.

Therefore, for any t ∈ N,

Dt−1K
′
t +DtωtNt +DtptR

′
t

≥ DtNta
′
t +DtNt−1b

′
t +DtK

′
t+1. (33)

Summing the inequalities in (33) for t = 0 through t = τ , yields

(1 + r0)K0 +

τ∑
t=0

Dt (ωtNt + ptR
′
t)

≥
τ∑

t=0

Dt (Nta
′
t +Nt−1b

′
t) +DτK

′
τ+1. (34)

By summing (32) and (34), we obtain

DτωτNτ ≥ Dτ (Nτa
′
τ +K ′

τ+1) +Dτpτ (S
′
τ −R′

τ ) + ϵ ≥ ϵ.

Then we have

lim
τ→∞

DτωτNτ > 0.

We get a contradiction. Therefore the equilibrium is Pareto-efficient. The proof

is completed.
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Proof of Theorem 422. Suppose (4) holds. We construct a Pareto im-

provement of the equilibrium allocation. To this end, notice that for any t ∈ N,

Ct +Kt+1 = F (Kt, BtNt, Rt),

where Ct = Ntat +Nt−1bt is the total consumption at time t. Let

ct =
Ct

BtNt
, kt =

Kt

BtNt
, zt =

Rt

BtNt
.

Then,

ct + µkt+1 = f(kt, zt).

In the sequel, fix (zt)t∈N. Let xt = µkt, ϕ(x, z) = f(x/µ, z). Then,

ct + xt+1 = ϕ(xt, zt), ∀t ∈ N.

By condition (4), there exist ε ∈ (0, 1) and τ ∈ N such that for any t ≥ τ ,

xtϕx(xt, zt)

xt+1
< ε.

If we can construct a sequence (c′t, x
′
t)t∈N such that c′τ > cτ , c

′
t = ct, ∀t ̸= τ ,

and x′t = xt, ∀t ≤ τ , and x′t > 0, ∀t > τ , then, we can get a Pareto improvement

of the equilibrium allocation.

Now, fix (xt)t≤τ and (ct)t ̸=τ . Let xτ+1 decrease a bit, then, accordingly, cτ

will increase strictly, and then, for any t > τ , xt+1 will decrease as well.

We attempt to prove that there exists a x′τ+1 ∈ (0, xτ+1) such that when

xτ+1 decreases to x′τ+1, then, accordingly, for any t > τ , xt+1 will decreases to

some x′t+1 > 0.

In fact, first of all, by sup
t∈N

zt < ∞, we know that there exists Z > 0 such

that zt ∈ [0, Z] for any t ∈ N.
22The core idea lies in constructing a Pareto improvement of the equilibrium alloca-

tion. This approach was first introduced in AMZS (1989) and later reiterated in Miao

(2020). However, the rigorous proof is presented here for the first time, inspired by insightful

comments from Professor Zhixiang Zhang at China Economics and Management Academy,

Central University of Finance and Economics, Beijing 100081, China, (email: zhangzhixi-

ang@cufe.edu.cn), to whom the author expresses deep gratitude.
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In addition, lim
x→∞

ϕx(x, z) < 1 uniformly for z ∈ [0, Z] and either lim inf
t→∞

xt >

0 or ϕx(0, z) <∞ for any z ≥ 0. It follows that there exist 0 ≤ x < x <∞ such

that (xt)t∈N is bounded in [x, x] and ϕx(x, z) is well defined in [x, x] × [0, Z];

and min
t∈N

ϕx(xt, zt) ≥ min
t∈N

ϕx(x, zt) =: m > 0.

Take ε′ ∈
(
0,m(ε−1 − 1)

)
. Noticing the uniform continuity of ϕx(x, z) in

[x, x]× [0, Z], we have that there exists δ ∈ (0, x) such that for any x, x′ ∈ [x, x],

|ϕx(x′, zt)− ϕx(x, zt)| ≤ ε′, ∀t ∈ N,

if only |x′ − x| ≤ δ.

Now, take x′τ+1 such that

0 <
xτ+1 − x′τ+1

xτ+1
<
δ

x
.

Then, for any t > τ ,

0 <
xt+1 − x′t+1

xt+1
=
ϕ(xt, zt)− ϕ(x′t, zt)

xt+1
≤ ϕx(x

′
t, zt)(xt − x′t)

xt+1

=

[
ϕx(x

′
t, zt)− ϕx(xt, zt)

ϕx(xt, zt)
+ 1

]
· xtϕx(xt, zt)

xt+1
· (xt − x′t)

xt

≤
[
ϕx(x

′
t, zt)− ϕx(xt, zt)

ϕx(x, zt)
+ 1

]
· xtϕx(xt, zt)

xt+1
· (xt − x′t)

xt

≤
[
ϕx(x

′
t, zt)− ϕx(xt, zt)

m
+ 1

]
· xtϕx(xt, zt)

xt+1
· (xt − x′t)

xt

≤ xt − x′t
xt

,

if only

0 <
xt − x′t
xt

<
δ

x
.

It follows that x′t > 0, ∀t > τ . Therefore, such a construction of Pareto im-

provement of the equilibrium allocation is feasible. The proof is completed.

Proof of Theorem 5. For any t ∈ N, by solving the utility maximization

problem for an individual of generation-t, we obtain

Ntat =
1

1 + ρ
It, Nt

bt+1

1 + rt+1
=

ρ

1 + ρ
It.

We know that there exist ε ∈ (0, 1) and T ∈ N such that for any t ≥ T ,

1 + rt
1 + it

< ε.
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Now, for any t ≥ T , consider the function of θ ∈ [0, 1]:

ft(θ) = ln (at(1− θ)) + ρ ln

(
bt+1 +

Nt+1

Nt
at+1θ

)
.

It’s easy to see that f ′t(θ) > 0 for any θ ∈ [0, θ∗t ), where

θ∗t =
ρ

1 + ρ

[
1− 1 + rt

1 + it

]
.

Let

θ∗ =
ρ

1 + ρ
(1− ε).

Clearly, for any t ≥ T ,

θ∗t > θ∗.

And hence for any t ≥ T ,

ft(θ
∗) > ft(0).

Then we can construct an allocation (a′t, b
′
t,Kt, St, Rt)t∈N, a Pareto improve-

ment of the equilibrium allocation (at, bt,Kt, St, Rt)t∈N, as follows: for any

t < T ,

a′t = at, b′t = bt;

and for any t ≥ T ,

a′t = at(1− θ∗), b′t = bt +
Nt

Nt−1
atθ

∗.

The proof is completed.

Proof of Corollary 1. Notice that Vt ≥ ptRt and Pareto efficiency is

stronger than dynamic efficiency. Then, by Theorem 2 and Theorem 3, we get

the required result. The proof is completed.

Proof of Corollary 2. The generalized Hotelling rule implies that for any

t ∈ N,

Dt+1pt+1Rt+1 = DtptRt
Rt+1

RtG′(St −Rt)
.

Then, by (8), we get lim
t→∞

DtptRt = 0, which, by (9), yields lim
t→∞

DtωtNt = 0.

Thus, by Theorem 3, we obtain the required result. The proof is completed.
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Proof of Corollary 3. Noticing that for any t ∈ N,

DtωtNt = K0
ωtNt

(1 + rt)Kt

t−1∏
s=0

1 + js
1 + rs

,

by (10) and (11), we get lim
t→∞

DtωtNt = 0. Then, by Theorem 3, we obtain the

required result. The proof is completed.

Proof of Corollary 4. The case q < 1 follows from Corollary 3; the case

q > 1 follows from Theorem 4. The proof is completed.

Proof of Proposition 1. The required result follows easily from the fol-

lowing Lemma 5.

Proof of proposition 2. Since for any t ∈ N, Kt+1 = αδYt, then

Dt+1Yt+1 =
1

α
Dt+1(1 + rt+1)Kt+1 =

1

α
DtKt+1 = δDtYt,

therefore lim
t→∞

DtYt = 0, which yields lim
t→∞

DtωtNt = lim
t→∞

βDtYt = 0. By

Theorem 3, we obtain the required result. The proof is completed.

Proof of Proposition 3. The social planner’s problem (P) is

max

∞∑
t=0

δt (δ ln at + ρ ln bt) ,

s.t. Kt+1 = AtK
α
t N

β
t R

γ
t −Ntat −Nt−1bt, ∀t ∈ N,

St+1 = η(St −Rt), ∀t ∈ N,

and all variables are nonnegative, where K0, S0 are given. By transformation

Xt = ξ−tKt, Ht = ξ−1/γRt, Zt = ξ−1/γSt,

ξ−(t+1)Ntat =
δ

δ + ρ
ct, ξ−(t+1)Nt−1bt =

ρ

δ + ρ
ct,

where ξ =
(
(1 + g)(1 + n)β

)1/(1−α)
, (P) can be reduced to (P′):

max

∞∑
t=0

δt ln ct,

s.t. Xt+1 = Xα
t H

γ
t − ct, ∀t ∈ N,

Zt+1 = η(Zt −Ht), ∀t ∈ N,

and all variables are nonnegative, where X0, Z0 are given.
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The Bellman equation for (P′) is

V (X,Z) = max
c,H

{ln c+ δV (XαHγ − c, η(Z −H))} .

One can verify directly that

V (X,Z) =
1

1− αδ

[
α lnX +

γ

τ
lnZ

]
+m, (35)

with some constant m, satisfies the above Bellman equation, and correspond-

ingly, the unique solution for the optimization problem in the right-hand side

of the Bellman equation is

c = (1− αδ)τγXαZγ , H = τZ, (36)

which is a stationary Markovian strategy for (P′).

Denote the path of state variables by this strategy as (Xt, Zt)t∈N, which

obviously satisfies the TVCs (transversality conditions):

lim
t→∞

δtV (Xt, Zt) = lim
t→∞

δt [XtV1(Xt, Zt) + ZtV2(Xt, Zt)] = 0.

Thus, the above V in (35) is the value function of (P′), and the strategy in (36)

is the unique optimal Markovian strategy for (P′).

Consequently, the unique optimal Markovian strategy for (P) is as follows:

for any t ∈ N,

at =
β

1 + ρ
Yt/Nt, bt =

(
α+

γ

τ

)
Yt/Nt−1, Rt = τSt,

where Yt = AtK
α
t N

β
t R

γ
t , and the corresponding dynamics of the state variables

are that for any t ∈ N,

Kt+1 = αδYt, St+1 = (ηδ)St.

We see that the trajectory (at, bt,Kt, St, Rt)t∈N induced by the strategy in (36)

is just the equilibrium allocation. The proof is completed.

Proof of Proposition 5. Denote the steady state of the dynamical system

D as (k, s, z), and denote the limiting wage and the limiting interest rate of the

corresponding equilibrium as ω and r, respectively. We have

k =
1

1 + n
(αkσ + β + γzσ)

(1−σ)/σ

[
θ − γ(s− z)

z1−σ

]
,
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αkσ + β + γzσ =
1

1 + n

( η
α

)1/(1−σ)
[
θ − γ(s− z)

z1−σ

]
.

It follows that

ω = β (αkσ + β + γzσ)
(1−σ)/σ

> 0,

1 + r = αkσ−1 (αkσ + β + γzσ)
(1−σ)/σ

= η > 1 + n,

which implies lim
t→∞

DtωtNt = 0. Then, by Theorem 3, this equilibrium is Pareto-

efficient. The proof is completed.

Proof of Proposition 6. First of all, no type III equilibrium exists. In fact,

otherwise, by (15), for large t, approximately, zt+1 = mz1−σ
t with some constant

m > 0, which yields zt must be bounded from above. This is a contradiction.

If η > 1 + n, there dos not exist a type I equilibrium with harvesting

speed indictor below θ. In fact, otherwise, for large t, approximately, zt+1 =

(η/(1 + n))
1/(1−σ)

zt. Then zt ̸→ 0 as t → ∞. We get a contradiction. On the

other hand, it’s easy to verify that there exists really a unique type I equilib-

rium, and its harvesting speed indictor is θ, and correspondingly, its limiting

capital per capita is π−1(θ).

Now, we suppose η ≤ 1 + n. Under this assumption, any type I equilibrium

corresponds to a ϵ ∈ [0, θ] such that

lim
t→∞

stz
σ−1
t = (θ − ϵ)/γ, lim

t→∞
kt = k,

where k = π−1(ϵ). In addition, for large t, approximately, by (15) and (17),

zt+1 =
( η
α

)1/(1−σ) k

(αkσ + β)1/σ
zt.

Therefore, ( η
α

)1/(1−σ) k

(αkσ + β)1/σ
≤ 1,

or, equivalently,

kσ
(
ησ/(1−σ) − α1/(1−σ)

)
≤ βασ/(1−σ).

Otherwise, zt ̸→ 0 as t→ ∞. This is a contradiction. Therefore, we define

θ = sup
{
ϵ ∈ [0, θ]

∣∣∣(π−1(ϵ))σ
(
ησ/(1−σ) − α1/(1−σ)

)
≤ βασ/(1−σ)

}
,
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and define k = π−1(θ).

Thus, any type I equilibrium corresponds to a k ∈ [0, k] and a ϵ ∈ [0, θ] with

ϵ = π(k) such that along this equilibrium path, the limit capital per capita is

k, and the harvesting speed indicator is ϵ. The proof is completed.

Proof of Proposition 7. Suppose η > 1 + n. If (19) holds, then by

Proposition 5, the unique type II equilibrium is Pareto-efficient. If (19) does

not hold, then ν ≤ 1+n
η < 1, which implies α ≥ ησ

(
2 + ρ−1

)σ−1
. Thus, for

the unique type I equilibrium, the limiting capital per capita is k = π−1(θ), the

limiting wage exists and is positive, while the limiting interest rate r satisfies

1 + r

1 + n
=
α

θ
kσ = x,

and x satisfies

(1 + n)σx = α

(
x+

β

θ

)1−σ

.

From η > 1 + n, α ≥ ησ
(
2 + ρ−1

)σ−1
, we obtain

(1 + n)σ < α

(
1 +

β

θ

)1−σ

.

Therefore, x > 1. Then, by Corollary 4, this equilibrium is Pareto-efficient.

Suppose η ≤ 1+n. Taking k ∈ (0, k] and ϵ ∈ (0, θ] with ϵ = π(k) arbitrarily.

The type I equilibrium with limiting capital per capita k satisfies the assumption

A3. Denote its limiting interest rate as r, and let

ϕ =
1 + r

1 + n
.

From

1 + r = αkσ−1 (αkσ + β)
(1−σ)/σ

,

we obtain

(1 + n)σϕ = α

(
ϕ+

β

ϵ

)1−σ

.

It’s easy to see that there exists a θ ∈ (0, θ] such that ϕ > 1, if ϵ < θ; ϕ < 1,

if ϵ > θ. Denote k = π−1(θ). Then, by Corollary 4, this equilibrium is Pareto-

efficient, if k < k; it is Pareto-inefficient, if k > k. The proof is completed.
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Proof of Proposition 8. (i) Suppose η ≤ 1+n. It’s easy to see that there

is no equilibrium of type III, but there is a continuum of equilibria of type I: for

any ϵ ∈ [0, θ], there is an equilibrium of type I such that as t→ ∞,

st − zt

z1−σ
t

→ (θ − ϵ)/γ, kt → 0.

(ii) Suppose η > 1 + n. First of all, there is no type III equilibrium with

harvesting speed indictor 0. In fact, otherwise, by (16), we have that for large

t, zt+1 ≤ zt/2, which contradicts zt → ∞ as t→ ∞.

If there is a type III equilibrium with harvesting speed indictor ϵ ∈ (0, θ]

and the limiting capital per capita k > 0, then, as t→ ∞,

st − zt

z1−σ
t

→ θ − ϵ

γ
, kt → k,

and

k =
ϵ

1 + n
(αkσ + β)

(1−σ)/σ
.

For simplicity, let x = α
ϵ k

σ. Then,

(1 + n)σx = α

(
x+

β

ϵ

)1−σ

. (37)

In addition, by (17), for large t, approximately,

zt+1 =
ϵ

1 + n

( η
α

)1/(1−σ) zt
αkσ + β

,

then it must hold that

1 ≤ ϵ

1 + n

( η
α

)1/(1−σ) 1

αkσ + β
=
( η
α

)1/(1−σ) 1

(1 + n)
[
x+ β

ϵ

] ,
or, equivalently,

η

α
≥ (1 + n)1−σ

[
x+

β

ϵ

]1−σ

= (1 + n)
x

α
,

that is,

x ≤ η

1 + n
. (38)

To sum up, there is a type III equilibrium with harvesting speed indicator

ϵ ∈ (0, θ], if and only if (37) has a solution satisfying (38).
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For given ϵ, the equation (37) for x has a solution, if and only if ϵ ≥ ϵ∗,

which implies θ ≥ ϵ∗, or, equivalently, α ≤ α∗. In addition, since (19) is not

satisfied, then,

η

1 + n

[(
ησ

α

)1/(1−σ)

− 1

]
≤ β

θ
.

With the above observations, the remainder of the results can be proven. The

proof is completed.

Proof of Proposition 9. First, consider an equilibrium of type I. Since for

any t ∈ N,

1 + rt = αkσ−1
t (αkσt + β + γzσt )

(1−σ)/σ
,

ωt = β (αkσt + β + γzσt )
(1−σ)/σ

,

then,

1

1 + rt+1

ωt+1Nt+1

ωtNt
=

1 + n

α

k1−σ
t+1

(αkσt + β + γzσt )
(1−σ)/σ

=
k−σ
t+1

α

[
θ − γ(st − zt)

z1−σ
t

]
≤ θ

α
k−σ
t+1 → 0, as t→ ∞,

which implies lim
t→∞

DtωtNt = 0. Then, by Theorem 3, the equilibrium is Pareto-

efficient.

Next, for any type III equilibrium with the harvesting speed indicator ϵ ∈

[ϵ∗, θ] and limiting capital per capita k and limiting interest rate r, we have

1 + r

1 + n
= x =

α

ϵ
kσ,

where x satisfies

(1 + n)σx = α

(
x+

β

ϵ

)1−σ

.

According to Corollary 4, this equilibrium is Parto-efficient if x > 1 and Pareto-

inefficient if x < 1. Therefore, by determining whether x > 1 or x < 1, one can

prove the remainder of the result.

Proof of Proposition 11. It’s easy to verify that if β < κ, then, x∗ ∈(
0, B2

(
1− 1

λ

))
, which implies G′(x∗) > 1; if β > κ, then x∗ ∈

(
B
2

(
1− 1

λ

)
, B2
)
,

which implies G′(x∗) < 1.
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For any t ∈ N, denote xt = St −Rt. Noticing that as t→ ∞,

xt → x∗, Rt → R∗, St → S∗,

and for any t ∈ N,

It = ωtNt +

[
pt+1G(xt)

1 + rt+1
− ptxt

]
= ωtNt + pt

[
G(xt)

G′(xt)
− xt

]
= Yt

{
β +

γ

Rt

[
G(xt)

G′(xt)
− xt

]}
,

by (23) and (25), we have

lim
t→∞

1 + it
1 + rt

= lim
t→∞

It
(1 + rt)It−1

= lim
t→∞

Yt
(1 + rt)Yt−1

= lim
t→∞

Kt+1

(1 + rt)Kt
= lim

t→∞

Kt+1

αYt
= lim

t→∞

Rt+1

RtG′(xt)
=

1

G′(x∗)
.

If β > κ, then

lim
t→∞

1 + it
1 + rt

> 1,

thus, by Theorem 5, the equilibrium is Pareto-inefficient.

If β < κ, then

lim
t→∞

Yt
(1 + rt)Yt−1

< 1,

therefore,

lim
t→∞

DtωtNt = β lim
t→∞

DtYt = 0,

thus, by Theorem 3, the equilibrium is Pareto-efficient. The proof is completed.
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